5 research outputs found

    Drivers of tropical forest loss between 2008 and 2019

    Get PDF
    During December 2020, a crowdsourcing campaign to understand what has been driving tropical forest loss during the past decade was undertaken. For 2 weeks, 58 participants from several countries reviewed almost 115 K unique locations in the tropics, identifying drivers of forest loss (derived from the Global Forest Watch map) between 2008 and 2019. Previous studies have produced global maps of drivers of forest loss, but the current campaign increased the resolution and the sample size across the tropics to provide a more accurate mapping of crucial factors leading to forest loss. The data were collected using the Geo-Wiki platform (www.geo-wiki.org) where the participants were asked to select the predominant and secondary forest loss drivers amongst a list of potential factors indicating evidence of visible human impact such as roads, trails, or buildings. The data described here are openly available and can be employed to produce updated maps of tropical drivers of forest loss, which in turn can be used to support policy makers in their decision-making and inform the public

    Methodology for generating a global forest management layer

    Get PDF
    The first ever global map of forest management was generated based on remote sensing data. To collect training data, we launched a series of Geo-Wiki (https://www.geo-wiki.org/) campaigns involving forest experts from different world regions, to explore which information related to forest management could be collected by visual interpretation of very high-resolution images from Google Maps and Microsoft Bing, Sentinel time series and normalized difference vegetation index (NDVI) profiles derived from Google Earth Engine. A machine learning technique was then used with the visually interpreted sample (280K locations) as a training dataset to classify PROBA-V satellite imagery. Finally, we obtained a global wall-to-wall map of forest management at a 100m resolution for the year 2015. The map includes classes such as intact forests; forests with signs of management, including logging; planted forests; woody plantations with a rotation period up to 15 years; oil palm plantations; and agroforestry. The map can be used to deliver further information about forest ecosystems, protected and observed forest status changes, biodiversity assessments, and other ecosystem-related aspects

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    Crowdsourcing deforestation in the tropics during the last decade: Data sets from the “Driver of Tropical Forest Loss” Geo-Wiki campaign

    No full text
    The data set is the result of the Drivers of Tropical Forest Loss crowdsourcing campaign. The campaign took place in December 2020. A total of 58 participants contributed validations of almost 120k locations worldwide. The locations were selected randomly from the Global Forest Watch tree loss layer (Hansen et al 2013), version 1.7. At each location the participants were asked to look at satellite imagery time series using a customized Geo-Wiki user interface and identify drivers of tropical forest loss during the years 2008 to 2019 following 3 steps: Step 1) Select the predominant driver of forest loss visible on a 1 km square (delimited by a blue bounding box); Step 2) Select any additional driver(s) of forest loss and; Step 3) Select if any roads, trails or buildings were visible in the 1 km bounding box. The Geo-Wiki campaign aims, rules and prizes offered to the participants in return for their work can be seen here: https://application.geo-wiki.org/Application/modules/drivers_forest_change/drivers_forest_change.html . The record contains 3 files: One “.csv” file with all the data collected by the participants during the crowdsourcing campaign (1158021 records); a second “.csv” file with the controls prepared by the experts at IIASA, used for scoring the participants (2001 unique locations, 6157 records) and a ”.docx” file describing all variables included in the two other files. A data descriptor paper explaining the mechanics of the campaign and describing in detail how the data was generated will be made available soon

    Global forest management data at a 100m resolution for the year 2015

    No full text
    We provide four data records: 1.The reference data set as a comma-separated file ("reference_data_set.csv") with the following attributes: “ID” is a unique location identifier “Latitude, Longitude” are centroid coordinates of a 100m x 100m pixel. “Land_use_ID “is a land use class: 11 - Naturally regenerating forest without any signs of human activities, e.g., primary forests. 20 - Naturally regenerating forest with signs of human activities, e.g., logging, clear cuts etc. 31 - Planted forest. 32 - Short rotation plantations for timber. 40 - Oil palm plantations. 53 - Agroforestry. “Flag” identifies a data origin: 1- the crowdsourced locations, 2- the control data set, 0 – the additional experts' classifications following the opportunistic approach. 2. The 100 m forest management map in a geoTiff format with the classes presented - "FML_v3.2.tif ". 3. The predicted class probability from the Random Forest classification in a geoTiff format - "ProbaV_LC100_epoch2015_global_v2.0.3_forest-management--layer-proba_EPSG-4326.tif" 4. Validation data set as a comma-separated file ("validation_data_set.csv) with the following attributes: “ID” is a unique location identifier “pixel_center_x” , “pixel_center_y ” are centroid coordinates of a 100m x 100m pixel in lat/lon projection “first_landuse_class “is a land use class, as in (1). “second_landuse_class “is a second possible land use class, as in (1), identified in case it was difficult to assign one class with high confidence
    corecore