16 research outputs found

    Boson-Fermion Duality and Metastability in Cuprate Superconductors

    Full text link
    The intrinsic structural metastability in cuprate high Tc_c materials, evidenced in a checker-board domain structure of the CuO2_2 planes, locally breaks translational and rotational symmetry. Dynamical charge - deformation fluctuations of such nano-size unidirectional domains, involving Cu-O-Cu molecular bonds, result in resonantly fluctuating diamagnetic pairs embedded in a correlated Fermi liquid. As a consequence, the single-particle spectral properties acquire simultaneously (i) fermionic low energy Bogoliubov branches for propagating Cooper pairs and (ii) bosonic localized glassy structures for tightly bound states of them at high energies. The partial localization of the single-particle excitations results in a fractionation of the Fermi surface as the strength of the exchange coupling between itinerant fermions and partially localized fermion pairs increases upon moving from the nodal to the anti-nodal point. This is also the reason why, upon hole doping, bound fermion pairs predominantly accumulate near the anti-nodal points and ultimately condense in an anisotropic fashion, tracking the gap in the single particle spectrum.Comment: 11 pages 5figure

    Bogoliubov shadow bands in the normal state of superconducting systems with strong pair fluctuations

    Full text link
    On the basis of a scenario where electron pairing is induced by resonant two-particle scattering (the Boson Fermion model), we show how precursors of the superconducting state - in form of overdamped Bogoliubov modes - emerge in the normal state upon approaching the transition temperature from above. This result is obtained by a renormalization technique based on continuous unitary transformations (the flow equations), projecting out the coherent contributions in the electron spectral function from an incoherent background.Comment: 4 pages, 2 figure

    Remnant superfluid collective phase oscillations in the normal state of systems with resonant pairing

    Full text link
    The signature of superfluidity in bosonic systems is a sound wave-like spectrum of the single particle excitations which in the case of strong interactions is roughly temperature independent. In fermionic systems, where fermion pairing arises as a resonance phenomenon between free fermions and paired fermionic states (examples are: the atomic gases of lithium or potassium controlled by a Feshbach resonance, polaronic systems in the intermediary coupling regime, d-wave hole pairing in the strongly correlated Hubbard system), remnants of such superfluid characteristics are expected to be visible in the normal state. The single particle excitations maintain there a sound wave like structure for wave vectors above a certain q_{min}(T) where they practically coincide there with the spectrum of the superfluid phase for T<T_{c}. Upon approaching the transition from above this region in q-space extends down to small momenta, except for a narrow region around q=0 where such modes change into damped free particleComment: 5 pages, 3 figures; to appear in Phys Rev

    The Atomic Limit of the Boson-Fermion Model

    Full text link
    The Boson-Fermion model, describing a mixture of hybridized localized Bosons and itinerant Fermions on a lattice, is known to exhibit spectral properties for the Fermions which upon lowering the temperature develop into a three pole structure in the vicinity of the Fermi level. These spectral features go hand in hand with the opening of a pseudogap in the density of states upon approaching the critical temperature Tc when superconductivity sets in. In the present work we study this model, in the atomic limit where the three pole structure arises naturally from the local bonding, anti-bonding and non-bonding states between the Bosons and Fermions.Comment: revtex, 9 pages and 6 eps figures. Submitted to Europhysics Letter

    Metal-insulator crossover in the Boson-Fermion model in infinite dimensions

    Full text link
    The Boson-Fermion model, describing a mixture of tightly bound electron pairs and quasi-free electrons hybridized with each other via a charge exchange term, is studied in the limit of infinite dimensions, using the Non-Crossing Approximation within the Dynamical Mean Field Theory. It is shown that a metal-insulator crossover, driven by strong pair fluctuations, takes place as the temperature is lowered. It manifests itself in the opening of a pseudogap in the electron density of states, accompanied by a corresponding effect in the optical and dc conductivity.Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let

    Interrelation between the pseudogap and the incoherent quasi-particle features of high-Tc superconductors

    Full text link
    Using a scenario of a hybridized mixture of localized bipolarons and conduction electrons, we demonstrate for the latter the simultaneous appearance of a pseudogap and of strong incoherent contributions to their quasi-particle spectrum which arise from phonon shake-off effects. This can be traced back to temporarily fluctuating local lattice deformations, giving rise to a double-peak structure in the pair distribution function, which should be a key feature in testing the origin of these incoherent contributions, recently seen in angle-resolved photoemission spectroscopy (ARPES).Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let
    corecore