7 research outputs found

    Gene repositioning within the cell nucleus is not random and is determined by its genomic neighborhood

    Get PDF
    Background: Heterochromatin has been reported to be a major silencing compartment during development and differentiation. Prominent heterochromatin compartments are located at the nuclear periphery and inside the nucleus (e.g., pericentric heterochromatin). Whether the position of a gene in relation to some or all heterochromatin compartments matters remains a matter of debate, which we have addressed in this study. Answering this question demanded solving the technical challenges of 3D measurements and the large-scale morphological changes accompanying cellular differentiation. Results: Here, we investigated the proximity effects of the nuclear periphery and pericentric heterochromatin on gene expression and additionally considered the effect of neighboring genomic features on a gene's nuclear position. Using a well-established myogenic in vitro differentiation system and a differentiation-independent heterochromatin remodeling system dependent on ectopic MeCP2 expression, we first identified genes with statistically significant expression changes by transcriptional profiling. We identified nuclear gene positions by 3D fluorescence in situ hybridization followed by 3D distance measurements toward constitutive and facultative heterochromatin domains. Single-cell-based normalization enabled us to acquire morphologically unbiased data and we finally correlated changes in gene positioning to changes in transcriptional profiles. We found no significant correlation of gene silencing and proximity to constitutive heterochromatin and a rather unexpected inverse correlation of gene activity and position relative to facultative heterochromatin at the nuclear periphery. Conclusion: In summary, our data question the hypothesis of heterochromatin as a general silencing compartment. Nonetheless, compared to a simulated random distribution, we found that genes are not randomly located within the nucleus. An analysis of neighboring genomic context revealed that gene location within the nucleus is rather dependent on CpG islands, GC content, gene density, and short and long interspersed nuclear elements, collectively known as RIDGE (regions of increased gene expression) properties. Although genes do not move away/to the heterochromatin upon up-/down-regulation, genomic regions with RIDGE properties are generally excluded from peripheral heterochromatin. Hence, we suggest that individual gene activity does not influence gene positioning, but rather chromosomal context matters for sub-nuclear location

    Measurement of replication structures at the nanometer scale using super-resolution light microscopy.

    No full text
    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses

    Rat hd mutation reveals an essential role of centrobin in spermatid head shaping and assembly of the head-tail coupling apparatus

    No full text
    The hypodactylous (hd) locus impairs limb development and spermatogenesis leading to male infertility in rats. We show that the hd mutation is caused by an insertion of an endogenous retrovirus into intron 10 of the Cntrob gene. The retroviral insertion in hd mutant rats disrupts the normal splicing of Cntrob transcripts and results in the expression of a truncated protein. During the final phase of spermiogenesis, centrobin localizes to the manchette, centrosome and the marginal ring of the spermatid acroplaxome, where it interacts with keratin 5-containing intermediate filaments. Mutant spermatids show a defective acroplaxome marginal ring and separation of the centrosome from its normal attachment site of the nucleus. This separation correlates with a disruption of head-tail coupling apparatus leading to spermatid decapitation during the final step of spermiogenesis and the absence of sperm in the epididymis. Cntrob may represent a novel candidate gene for presently unexplained hereditary forms of teratozoospermia and the "easily decapitated sperm syndrome" in humans

    Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    No full text
    corecore