7 research outputs found

    The EU CADZIE database for extreme and deflected snow avalanches

    Get PDF
    International audienceThe EU programme CADZIE (Catastrophic Avalanches: Defence Structures and Zoning in Europe), was established after the catastrophic 1999 avalanche winter in Europe. The overall objective of the programme is improved snow avalanche risk management by: (1) improved avalanche hazard zoning by computational models; and (2) improved understanding of the interaction between defence structures and avalanches. One contribution to meet the objectives is a database of well-documented extreme or deflected avalanche events in the six countries of the partners of the programme. The database contains observational, topographical and meteorological snow avalanche data with reliability, as well as references, copyrights, etc., all in a convenient framework based on common formats. The structure, contents, and potential use of the database are described. Example calculations of extreme and deflected events made by the NGI user interface "SKRED", for practical use of avalanche computational models, present applications of the database. Finally, further development of the database and of the computational models to meet the future needs in avalanche hazard zoning is proposed

    The design of avalanche protection dams : Recent practical and theoretical developments

    Get PDF
    This book discusses the design of dams and other protective measures in the run-out zones of wet- and dry-snow avalanches. It summarises recent theoretical developments and the results of field and laboratory studies, combining them with traditional design guidelines and principles to formulate design recommendations. Not discussed are hazard zoning, land use planning, evacuations, supporting structures in starting zones, snow fences in catchment areas, and other safety measures outside the run-out zone. Reinforcement of individual buildings also falls outside the scope of the book, as do protective measures against landslides and slushflows.European Comissio

    A review of rockfall mechanics and modelling approaches

    No full text
    Abstract: Models can be useful tools to assess the risk posed by rockfall throughout relatively large mountainous areas (>500 km2), in order to improve protection of endangered residential areas and infrastructure. Therefore the purpose of this study was to summarize existing rockfall models and to propose modifications to make them suitable for predicting rockfall at a regional scale. First, the basic mechanics of rockfall are summarized, including knowledge of the main modes of motion: falling, bouncing and rolling. Secondly, existing models are divided in three groups: (1) empirical models, (2) process-based models and (3) Geophysical Information System (GIS)-based models. For each model type its basic principles and ability to predict rockfall runout zones are summarized. The final part is a discussion of how a model for predicting rockfall runout zones at a regional scale should be developed. A GIS-based distribution model is suggested that combines a detailed process-based model and a GIS. Potential rockfall source areas and falltracks are calculated by the GIS component of the model and the rockfall runout zones are calculated by the process-based component. In addition to this model, methods for the estimation of model parameters values at a regional scale have to be developed. Key words: distributed model, GIS, modelling, natural hazard, rockfall.
    corecore