80 research outputs found

    Long-term culture of human pancreatic slices as a model to study real-time islet regeneration.

    Get PDF
    The culture of live pancreatic tissue slices is a powerful tool for the interrogation of physiology and pathology in an in vitro setting that retains near-intact cytoarchitecture. However, current culture conditions for human pancreatic slices (HPSs) have only been tested for short-term applications, which are not permissive for the long-term, longitudinal study of pancreatic endocrine regeneration. Using a culture system designed to mimic the physiological oxygenation of the pancreas, we demonstrate high viability and preserved endocrine and exocrine function in HPS for at least 10 days after sectioning. This extended lifespan allowed us to dynamically lineage trace and quantify the formation of insulin-producing cells in HPS from both non-diabetic and type 2 diabetic donors. This technology is expected to be of great impact for the conduct of real-time regeneration/developmental studies in the human pancreas.post-print3.907 K

    Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche.

    Get PDF
    We have described multipotent progenitor-like cells within the major pancreatic ducts (MPDs) of the human pancreas. They express PDX1, its surrogate surface marker P2RY1, and the bone morphogenetic protein (BMP) receptor 1A (BMPR1A)/activin-like kinase 3 (ALK3), but not carbonic anhydrase II (CAII). Here we report the single-cell RNA sequencing (scRNA-seq) of ALK3bright+-sorted ductal cells, a fraction that harbors BMP-responsive progenitor-like cells. Our analysis unveiled the existence of multiple subpopulations along two major axes, one that encompasses a gradient of ductal cell differentiation stages, and another featuring cells with transitional phenotypes toward acinar tissue. A third potential ducto-endocrine axis is revealed upon integration of the ALK3bright+ dataset with a single-cell whole-pancreas transcriptome. When transplanted into immunodeficient mice, P2RY1+/ALK3bright+ populations (enriched in PDX1+/ALK3+/CAII− cells) differentiate into all pancreatic lineages, including functional ÎČ-cells. This process is accelerated when hosts are treated systemically with an ALK3 agonist. We found PDX1+/ALK3+/CAII− progenitor-like cells in the MPDs of types 1 and 2 diabetes donors, regardless of the duration of the disease. Our findings open the door to the pharmacological activation of progenitor cells in situ.post-print3.184 K

    TAT-Mediated Transduction of MafA Protein In Utero Results in Enhanced Pancreatic Insulin Expression and Changes in Islet Morphology

    Get PDF
    Alongside Pdx1 and Beta2/NeuroD, the transcription factor MafA has been shown to be instrumental in the maintenance of the beta cell phenotype. Indeed, a combination of MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) was recently reported to lead to the effective reprogramming of acinar cells into insulin-producing beta cells. These experiments set the stage for the development of new strategies to address the impairment of glycemic control in diabetic patients. However, the clinical applicability of reprogramming in this context is deemed to be poor due to the need to use viral vehicles for the delivery of the above factors. Here we describe a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an efficiency of 100% and binds to the insulin promoter in vitro. When injected in utero into living mouse embryos, TAT-MafA significantly up-regulates target genes and induces enhanced insulin production as well as cytoarchitectural changes consistent with faster islet maturation. As the latest addition to our armamentarium of transducible proteins (which already includes Pdx1 and Ngn3), the purification and characterization of a functional TAT-MafA protein opens the door to prospective therapeutic uses that circumvent the use of viral delivery. To our knowledge, this is also the first report on the use of protein transduction in utero

    Present and future cell therapies for pancreatic beta cell replenishment

    No full text

    Pancreatic Reprogramming

    No full text
    Hidden behind the hype of prospective stem cell-based approaches to treat human disease, reprogramming techniques have finally entered the landscape of regenerative medicine and are quickly becoming one of the most exciting and powerful weapons in the field. In the context of pancreatic regeneration, the reprogramming of non-endocrine adult tissues to cells with phenotypes resembling to those of the hormone-producing cells of the islets of Langerhans is a fertile and dynamic area of research. Here we analyze two of the most studied sources of reprogrammable cells, namely the liver and the acinar compartment of the pancreas. Several groups have now established that the ectopic expression of master pancreatic regulators such as Pdx1, MafA, Ngn3, or BETA2/NeuroD can result in variable degrees of reprogramming toward pancreatic endocrine fates, leading to insulin production in vitro, and reversal of hyperglycemia in vivo. The state of the art and clinical prospects of these novel approaches are discussed in the following chapter

    Present and future cell therapies for pancreatic beta cell replenishment

    Full text link
    • 

    corecore