4 research outputs found

    Extreme Weather and Global Agricultural Markets: Experimental Analysis of the Impacts of Heat Waves on Wheat Markets

    Get PDF
    Extreme-weather events frequently drive production fluctuations, price volatility, and hence uncertainty on agricultural commodity markets. Simulation models of global agriculture typically assume normal weather in deterministic scenarios, contain no explicit parameterization of weather elements on the supply side, and confound multitudinous sources of yield fluctuation in exogenous yield shocks. As a part of a wider project on extreme events modelling, in this paper we present the experimental design of a first attempt to explicitly parameterize extreme weather into a partial equilibrium model of global agriculture (Aglink-Cosimo). We outline the main model additions and present preliminary estimates of wheat yield-to-heat elasticities for key regions. We also present the potential wheat market impacts from a counterfactual heat-wave scenario in Australia. Finally, we outline ongoing and future work on multi-scenario analysis in the context of extreme weather and global markets

    Extreme Weather and Global Agricultural Markets: Experimental Analysis of the Impacts of Heat Waves on Wheat Markets

    No full text
    Extreme-weather events frequently drive production fluctuations, price volatility, and hence uncertainty on agricultural commodity markets. Simulation models of global agriculture typically assume normal weather in deterministic scenarios, contain no explicit parameterization of weather elements on the supply side, and confound multitudinous sources of yield fluctuation in exogenous yield shocks. As a part of a wider project on extreme events modelling, in this paper we present the experimental design of a first attempt to explicitly parameterize extreme weather into a partial equilibrium model of global agriculture (Aglink-Cosimo). We outline the main model additions and present preliminary estimates of wheat yield-to-heat elasticities for key regions. We also present the potential wheat market impacts from a counterfactual heat-wave scenario in Australia. Finally, we outline ongoing and future work on multi-scenario analysis in the context of extreme weather and global markets

    Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    No full text
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.</p

    Is diet partly responsible for differences in COVID-19 death rates between and within countries?

    No full text
    corecore