1,096 research outputs found
Polynomial kernels for 3-leaf power graph modification problems
A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are
V and such that (u,v) is an edge iff u and v are at distance at most 3 in T.
The 3-leaf power graph edge modification problems, i.e. edition (also known as
the closest 3-leaf power), completion and edge-deletion, are FTP when
parameterized by the size of the edge set modification. However polynomial
kernel was known for none of these three problems. For each of them, we provide
cubic kernels that can be computed in linear time for each of these problems.
We thereby answer an open problem first mentioned by Dom, Guo, Huffner and
Niedermeier (2005).Comment: Submitte
Collections Amplifying Diverse Voices
This article explores the creation, implementation, and maintenance of American University Library\u27s Collections Amplifying Diverse Voices
An Insider’s Framework of Inclusive Excellence
Over the past few years, there has been an increase in libraries recruiting positions such as DEI Librarian, Librarian for Inclusion, and Director of Diversity, Equity, Inclusion and Organizational Excellence. The positions are often vague about the job responsibilities but specific about the expectations of promoting EDI- whether in collections, staff, or culture. This article explores this DEI work through an interview with Ione Damasco, the Associate Dean for Inclusive Excellence, Engagement, and Operations at the University of Dayton
Minimal Conflicting Sets for the Consecutive Ones Property in ancestral genome reconstruction
A binary matrix has the Consecutive Ones Property (C1P) if its columns can be
ordered in such a way that all 1's on each row are consecutive. A Minimal
Conflicting Set is a set of rows that does not have the C1P, but every proper
subset has the C1P. Such submatrices have been considered in comparative
genomics applications, but very little is known about their combinatorial
structure and efficient algorithms to compute them. We first describe an
algorithm that detects rows that belong to Minimal Conflicting Sets. This
algorithm has a polynomial time complexity when the number of 1's in each row
of the considered matrix is bounded by a constant. Next, we show that the
problem of computing all Minimal Conflicting Sets can be reduced to the joint
generation of all minimal true clauses and maximal false clauses for some
monotone boolean function. We use these methods on simulated data related to
ancestral genome reconstruction to show that computing Minimal Conflicting Set
is useful in discriminating between true positive and false positive ancestral
syntenies. We also study a dataset of yeast genomes and address the reliability
of an ancestral genome proposal of the Saccahromycetaceae yeasts.Comment: 20 pages, 3 figure
A structural approach to kernels for ILPs: Treewidth and Total Unimodularity
Kernelization is a theoretical formalization of efficient preprocessing for
NP-hard problems. Empirically, preprocessing is highly successful in practice,
for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this,
previous work studied the existence of kernelizations for ILP related problems,
e.g., for testing feasibility of Ax <= b. In contrast to the observed success
of CPLEX, however, the results were largely negative. Intuitively, practical
instances have far more useful structure than the worst-case instances used to
prove these lower bounds.
In the present paper, we study the effect that subsystems with (Gaifman graph
of) bounded treewidth or totally unimodularity have on the kernelizability of
the ILP feasibility problem. We show that, on the positive side, if these
subsystems have a small number of variables on which they interact with the
remaining instance, then we can efficiently replace them by smaller subsystems
of size polynomial in the domain without changing feasibility. Thus, if large
parts of an instance consist of such subsystems, then this yields a substantial
size reduction. We complement this by proving that relaxations to the
considered structures, e.g., larger boundaries of the subsystems, allow
worst-case lower bounds against kernelization. Thus, these relaxed structures
can be used to build instance families that cannot be efficiently reduced, by
any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium
on Algorithms (ESA 2015
Parameterized Algorithms for Modular-Width
It is known that a number of natural graph problems which are FPT
parameterized by treewidth become W-hard when parameterized by clique-width. It
is therefore desirable to find a different structural graph parameter which is
as general as possible, covers dense graphs but does not incur such a heavy
algorithmic penalty.
The main contribution of this paper is to consider a parameter called
modular-width, defined using the well-known notion of modular decompositions.
Using a combination of ILPs and dynamic programming we manage to design FPT
algorithms for Coloring and Partitioning into paths (and hence Hamiltonian path
and Hamiltonian cycle), which are W-hard for both clique-width and its recently
introduced restriction, shrub-depth. We thus argue that modular-width occupies
a sweet spot as a graph parameter, generalizing several simpler notions on
dense graphs but still evading the "price of generality" paid by clique-width.Comment: to appear in IPEC 2013. arXiv admin note: text overlap with
arXiv:1304.5479 by other author
Komunikasi Digital Melalui Seni Arca
Penyelidikkan ini bertujuan mengkaji siri karya seni arca dengan cara menganalisa komunikasi digital melalui teknologi mobil. Teknologi mobil merupakan satu kaedah komunikasi popular di abad ke 21. Pengarca mengaplikasikan komunikasi digital melalui pelantar teknologi mobil sebagai medium dalam penghasilan karya. Penyelidikan ini menggunakan kaedah praktis studio melalui kajian yang melibatkan eksperimentasi. Justeru itu, fabrikasi bentuk menerusi modifikasi dan manipulasi menjadi teras dalam proses eksperimentasi kajian seni arca. Di Malaysia, pendekatan komunikasi digital sebagai medium adalah sangat terhad. Ini disebabkan oleh perkembangan seni arca di Malaysia adalah terkebelakang berbanding barat. Objektif penyelidikan ini adalah untuk mengembangkan komunikasi digital merentasi media dalam konteks seni arca dan merupakan medium baru dalam bidang seni kontemporari. Teknologi mobil merupakan keperluan bagi generasi hari ini kerana kepentingan multi fungsinya. Peranti mudah alih, pada suatu ketika dahulu dianggap sebagai barang mewah yang hanya digunakan oleh individu tertentu sahaja. Namun, kini telah menjadi gaya hidup digital dan mampu dimiliki oleh setiap golongan masyarakat tanpa mengira usia atau pun jantina. Disebalik perkembangan teknologi mudah alih ini, fungsi gajet telah menjadi begitu penting melibatkan beberapa bidang utama di dalam kehidupan. Ia mempengaruhi serta membentuk budaya komunikasi dan hiburan. Hasil kajian ini mendapati komunikasi digital dalam kontek seni arca menjelaskan kebergantugan dan interaksi manusia dengan mesin melalui gaya hidup digital. Ia merupakan suatu ekspresi terhadap aspirasi, emosi dan obsesi yang menjelaskan gaya hidup digital masa kin
- …