130 research outputs found

    Accelerated brain aging as a biomarker for staging in bipolar disorder:An exploratory study

    Get PDF
    Background:Two established staging models outline the longitudinal progression in bipolar disorder (BD) based on episode recurrence or inter-episodic functioning. However, underlying neurobiological mechanisms and corresponding biomarkers remain unexplored. This study aimed to investigate if global and (sub)cortical brain structures, along with brain-predicted age difference (brain-PAD) reflect illness progression as conceptualized in these staging models, potentially identifying brain-PAD as a biomarker for BD staging. Methods:In total, 199 subjects with bipolar-I-disorder and 226 control subjects from the Dutch Bipolar Cohort with a high-quality T1-weighted magnetic resonance imaging scan were analyzed. Global and (sub)cortical brain measures and brain-PAD (the difference between biological and chronological age) were estimated. Associations between individual brain measures and the stages of both staging models were explored. Results:A higher brain-PAD (higher biological age than chronological age) correlated with an increased likelihood of being in a higher stage of the inter-episodic functioning model, but not in the model based on number of mood episodes. However, after correcting for the confounding factors lithium-use and comorbid anxiety, the association lost significance. Global and (sub)cortical brain measures showed no significant association with the stages. Conclusions:These results suggest that brain-PAD may be associated with illness progression as defined by impaired inter-episodic functioning. Nevertheless, the significance of this association changed after considering lithium-use and comorbid anxiety disorders. Further research is required to disentangle the intricate relationship between brain-PAD, illness stages, and lithium intake or anxiety disorders. This study provides a foundation for potentially using brain-PAD as a biomarker for illness progression.</p

    Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: A multicenter machine learning analysis

    Get PDF
    Background Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. Results Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC). Conclusions These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.publishedVersio

    Amyloid-β Load Is Related to Worries, but Not to Severity of Cognitive Complaints in Individuals With Subjective Cognitive Decline: The SCIENCe Project

    Get PDF
    Objective: Subjective cognitive decline (SCD) is associated with an increased risk of Alzheimer’s Disease (AD). Early disease processes, such as amyloid-β aggregation measured with quantitative PET, may help to explain the phenotype of SCD. The aim of this study was to investigate whether quantitative amyloid-β load is associated with both self- and informant-reported cognitive complaints and memory deficit awareness in individuals with SCD.Methods: We included 106 SCD patients (mean ± SD age: 64 ± 8, 45%F) with 90 min dynamic [18F]florbetapir PET scans. We used the following questionnaires to assess SCD severity: cognitive change index (CCI, self and informant reports; 2 × 20 items), subjective cognitive functioning (SCF, four items), and five questions “Do you have complaints?” (yes/no) for memory, attention, organization and language), and “Does this worry you? (yes/no).” The Rivermead Behavioral Memory Test (RBMT)-Stories (immediate and delayed recall) was used to assess objective episodic memory. To investigate the level of self-awareness, we calculated a memory deficit awareness index (Z-transformed (inverted self-reported CCI minus episodic memory); higher index, heightened self-awareness) and a self-proxy index (Z-transformed self- minus informant-reported CCI). Mean cortical [18F]florbetapir binding potential (BPND) was derived from the PET data. Logistic and linear regression analyses, adjusted for age, sex, education, and depressive symptoms, were used to investigate associations between BPND and measures of SCD.Results: Higher mean cortical [18F]florbetapir BPND was associated with SCD-related worries (odds ratio = 1.76 [95%CI = 1.07 ± 2.90]), but not with other SCD questionnaires (informant and self-report CCI or SCF, total scores or individual items, all p &gt; 0.05). In addition, higher mean cortical [18F]florbetapir BPND was associated with a higher memory deficit awareness index (Beta = 0.55), with an interaction between BPND and education (p = 0.002). There were no associations between [18F]florbetapir BPND and self-proxy index (Beta = 0.11).Conclusion: Amyloid-β deposition was associated with SCD-related worries and heightened memory deficit awareness (i.e., hypernosognosia), but not with severity of cognitive complaints. Our findings indicate that worries about self-perceived decline may reflect an early symptom of amyloid-β related pathology rather than subjective cognitive functioning

    Interrogating Associations Between Polygenic Liabilities and Electroconvulsive Therapy Effectiveness

    Get PDF
    Background: Electroconvulsive therapy (ECT) is the most effective treatment for severe major depressive episodes (MDEs). Nonetheless, firmly established associations between ECT outcomes and biological variables are currently lacking. Polygenic risk scores (PRSs) carry clinical potential, but associations with treatment response in psychiatry are seldom reported. Here, we examined whether PRSs for major depressive disorder, schizophrenia (SCZ), cross-disorder, and pharmacological antidepressant response are associated with ECT effectiveness. Methods: A total of 288 patients with MDE from 3 countries were included. The main outcome was a change in the 17-item Hamilton Depression Rating Scale scores from before to after ECT treatment. Secondary outcomes were response and remission. Regression analyses with PRSs as independent variables and several covariates were performed. Explained variance (R 2) at the optimal p-value threshold is reported. Results: In the 266 subjects passing quality control, the PRS-SCZ was positively associated with a larger Hamilton Depression Rating Scale decrease in linear regression (optimal p-value threshold = .05, R 2 = 6.94%, p < .0001), which was consistent across countries: Ireland (R 2 = 8.18%, p = .0013), Belgium (R 2 = 6.83%, p = .016), and the Netherlands (R 2 = 7.92%, p = .0077). The PRS-SCZ was also positively associated with remission (R 2 = 4.63%, p = .0018). Sensitivity and subgroup analyses, including in MDE without psychotic features (R 2 = 4.42%, p = .0024) and unipolar MDE only (R 2 = 9.08%, p < .0001), confirmed the results. The other PRSs were not associated with a change in the Hamilton Depression Rating Scale score at the predefined Bonferroni-corrected significance threshold. Conclusions: A linear association between PRS-SCZ and ECT outcome was uncovered. Although it is too early to adopt PRSs in ECT clinical decision making, these findings strengthen the positioning of PRS-SCZ as relevant to treatment response in psychiatry

    DenseNet and Support Vector Machine classifications of major depressive disorder using vertex-wise cortical features

    Full text link
    Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies. In this study, we used globally representative data from the ENIGMA-MDD working group containing an extensive sample of people with MDD (N=2,772) and HC (N=4,240), which allows a comprehensive analysis with generalizable results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would outperform the latter. As we analyzed a multi-site sample, we additionally applied the ComBat harmonization tool to remove potential nuisance effects of site. We found that both classifiers exhibited close to chance performance (balanced accuracy DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of features and classifiers is unfeasible

    Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures

    Get PDF
    Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects

    Older Age Bipolar Disorder

    No full text
    Further understanding of older age bipolar disorder (OABD) may lead to more specific recommendations for treatment adjusted to the specific characteristics and needs caused by age-related somatic and cognitive changes. Late-onset mania has a broad differential diagnosis and requires full psychiatric and somatic work-up, including brain imaging. Research on pharmacotherapy in OABD is limited. First-line treatment of OABD is similar to that for adult bipolar disorder (BD), with specific attention to vulnerability to side effects and somatic comorbidity. Because findings in younger adults with BD cannot be extrapolated to OABD, more research in OABD is warranted

    Older Age Bipolar Disorder

    No full text
    Further understanding of older age bipolar disorder (OABD) may lead to more specific recommendations for treatment adjusted to the specific characteristics and needs caused by age-related somatic and cognitive changes. Late-onset mania has a broad differential diagnosis and requires full psychiatric and somatic work-up, including brain imaging. Research on pharmacotherapy in OABD is limited. First-line treatment of OABD is similar to that for adult bipolar disorder (BD), with specific attention to vulnerability to side effects and somatic comorbidity. Because findings in younger adults with BD cannot be extrapolated to OABD, more research in OABD is warranted

    Elektroconvulsietherapie: indicaties, effectiviteit, veiligheid en bijwerkingen.

    No full text
    Electroconvulsion therapy (ECT) is the generation of an epileptic seizure by means of a brief pulse of electrical current under general anaesthesia and is used to treat psychiatric disorders. The principal indication for ECT is severe depression, with or without psychotic characteristics. ECT works quicker and is more effective than antidepressants and has a lower risk of side effects. The principle side effect is retrograde amnesia. ECT can be administered with unilateral or bilateral electrodes. In the Netherlands the unilateral electrode is used, as this probably gives rise to fewer cognitive side effects
    • …
    corecore