16 research outputs found

    Dermatologic findings in 16 patients with Cockayne syndrome and cerebro-oculo-facial-skeletal syndrome

    Get PDF
    IMPORTANCE: Cockayne syndrome (CS) and cerebro-oculo-facial-skeletal (COFS) syndrome are autosomal recessive diseases that belong to the family of nucleotide excision repair disorders. Our aim was to describe the cutaneous phenotype of patients with these rare diseases. OBSERVATIONS: A systematic dermatologic examination of 16 patients included in a European study of CS was performed. The patients were aged 1 to 28 years. Six patients (38%) had mutations in the Cockayne syndrome A (CSA) gene, and the remaining had Cockayne syndrome B (CSB) gene mutations. Fourteen patients were classified clinically as having CS and 2 as having COFS syndrome. Photosensitivity was present in 75% of the patients and was characterized by sunburn after brief sun exposure. Six patients developed symptoms after short sun exposure through a windshield. Six patients had pigmented macules on sun-exposed skin, but none developed a skin neoplasm. Twelve patients (75%) displayed cyanotic acral edema of the extremities. Eight patients had nail dystrophies and 7 had hair anomalies. CONCLUSIONS AND RELEVANCE: The dermatologic findings of 16 cases of CS and COFS syndrome highlight the high prevalence of photosensitivity and hair and nail disorders. Cyanotic acral edema was present in 75% of our patients, a finding not previously reported in CS

    Expanding phenotype of hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis caused by FAM111B mutations: Report of an additional family raising the question of cancer predisposition and a short review of early-onset poikiloderma.

    Get PDF
    journal article2017 Mar2017 03 19importedHereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP [MIM#615704]) is an extremely rare syndromic form of autosomal dominant poikiloderma. This genetic disorder was first identified in a South African family in 2006.1 To date, 3 families and 9 independent sporadic cases have been reported.2-4 Here we report an additional family of POIKTMP and expand the clinical spectrum. We describe, for the first time to our knowledge, a pancreatic cancer in the clinical course in 1 patient

    A possible cranio-oro-facial phenotype in Cockayne syndrome

    Get PDF
    BACKGROUND: Cockayne Syndrome CS (Type A - CSA; or CS Type I OMIM #216400) (Type B - CSB; or CS Type II OMIM #133540) is a rare autosomal recessive neurological disease caused by defects in DNA repair characterized by progressive cachectic dwarfism, progressive intellectual disability with cerebral leukodystrophy, microcephaly, progressive pigmentary retinopathy, sensorineural deafness photosensitivity and possibly orofacial and dental anomalies. METHODS: We studied the cranio-oro-facial status of a group of 17 CS patients from 15 families participating in the National Hospital Program for Clinical Research (PHRC) 2005 >. All patients were examined by two investigators using the Diagnosing Dental Defects Database (D[4]/phenodent) record form. RESULTS: Various oro-facial and dental anomalies were found: retrognathia; micrognathia; high- arched narrow palate; tooth crowding; hypodontia (missing permanent lateral incisor, second premolars or molars), screwdriver shaped incisors, microdontia, radiculomegaly, and enamel hypoplasia. Eruption was usually normal. Dental caries was associated with enamel defects, a high sugar/carbohydrate soft food diet, poor oral hygiene and dry mouth. Cephalometric analysis revealed mid-face hypoplasia, a small retroposed mandible and hypo-development of the skull. CONCLUSION: CS patients may have associated oro-dental features, some of which may be more frequent in CS children - some of them being described for the first time in this paper (agenesis of second permanent molars and radiculomegaly). The high susceptibility to rampant caries is related to a combination of factors as well as enamel developmental defects. Specific attention to these anomalies may contribute to diagnosis and help plan management

    A Novel Mutation Involving the Initiation Codon of FGF3 in a Family Described with Complete Inner Ear Agenesis, Microtia and Major Microdontia (LAMM Syndrome)

    Get PDF
    LAMM syndrome (OMIM #610706) is a rare autosomal recessive syndrome characterized by the association of Michel aplasia, microdontia and malformation of the external ear. Different mutations in FGF3 gene were reported in several families presenting with this syndrome. Clinical features and genetic results observed in a family with LAMM syndrome are reported. The diagnosis of isolated Michel aplasia was initially made in this family composed of two affected children. Microtia and microdontia was recently evidenced in both patients suggesting the diagnosis of LAMM syndrome. New auditory and orodental iconography was performed permitting to describe the patients’ phenotype in depth and to report rare findings of LAMM syndrome. The sequencing of FGF3 gene identified a novel missense mutation (c.2T>G), substituting the first initiator methionine in arginine, in the fibroblast growth factor 3 (FGF3) at the homozygous state in both patients. LAMM syndrome was confirmed and appropriate genetic counseling performed

    SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia

    Get PDF
    BACKGROUND: Deletions in ITPR1, coding for the inositol-triphosphate receptor type 1, have been recently identified in spinocerebellar ataxia type 15 (SCA15). OBJECTIVE: To determine the frequency and the phenotypical spectrum of SCA15. DESIGN: Taqman polymerase chain reaction (258 index cases) or single-nucleotide polymorphism genome-wide genotyping (75 index cases). SETTING: A collaboration between the Centre de Recherche de l'Institut de Cerveau et de la Moelle Epiniere of the Salpetriere Hospital (Paris, France) and the Molecular Genetics Unit of the National Institute of Aging (Bethesda, Maryland). Patients Index cases of 333 families with autosomal dominant cerebellar ataxia negative for CAG repeat expansions in coding exons. MAIN OUTCOME MEASURES: Detection of ITPR1 copy number alterations. RESULTS: A deletion of ITPR1 was found in 6 of 333 families (1.8%), corresponding to 13 patients with SCA15. Age at onset ranged from 18 to 66 years (mean [SD] age, 35 [16] years). The symptom at onset was cerebellar gait ataxia, except in 1 patient with isolated upper limb tremor. Although families were tested irrespective of their phenotype, patients with SCA15 had a homogeneous phenotype and were characterized by a slowly progressive cerebellar ataxia. However, pyramidal signs (2 patients) and mild cognitive problems (2 patients) were occasionally present. Radiologic findings showed global or predominant vermian cerebellar atrophy in all patients. CONCLUSIONS: In this series, ITPR1 deletions were rare and accounted for approximately 1% of all autosomal dominant cerebellar ataxias. The SCA15 phenotype mostly consists of a slowly progressive isolated cerebellar ataxia with variable age at onset; an additional pyramidal syndrome and problems in executive functions may be present

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement.

    Get PDF
    BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.journal articleresearch support, non-u.s. gov't2016 Feb2015 10 26importe

    Syndrome de Bardet-Biedl: cils et obésité - de la génétique aux approches intégratives. [Bardet-Biedl syndrome: cilia and obesity - from genes to integrative approaches]:

    No full text
    The primary cilium is a specialized organelle, present at the surface of most eukaryotic cells, whose main function is to detect, integrate and transmit intra- and extra-cellular signals. Its dysfunction usually results in a group of severe clinical manifestations nowadays termed ciliopathies. The latter can be of syndromic nature with multi-organ dysfunctions and can also be associated with a morbid obese phenotype, like it is the case in the iconic ciliopathy, the Bardet Biedl syndrome (BBS). This review will discuss the contribution of the unique context offered by the emblematic BBS for understanding the mechanisms leading to obesity via the involvement of the primary cilium together with identification of novel molecular players and signaling pathways it has helped to highlight. In the current context of translational medicine and system biology, this article will also discuss the potential benefits and challenges posed by these techniques via multi-level approaches to better dissect the underlying mechanisms leading to the complex condition of obesity

    Dental and extra-oral clinical features in 41 patients with WNT10A gene mutations: a multicentric genotype-phenotype study.

    No full text
    WNT10A gene encodes a canonical wingless pathway signaling molecule involved in cell fate specification as well as morphogenetic patterning of the developing ectoderm, nervous system, skeleton, and tooth. In patients, WNT10A mutations are responsible for ectodermal-derived pathologies including isolated hypo-oligodontia, tricho-odonto-onycho-dermal dysplasia (TOODD) and Schöpf-Schulz-Passarge Syndrome (SSPS). Here we describe the dental, ectodermal, and extra-ectodermal phenotypic features of a cohort of 41 patients from 32 unrelated families. Correlations with WNT10A molecular status (heterozygous carrier, compound heterozygous, homozygous) and patient's phenotypes were performed. Mild to severe oligodontia was observed in all patients bearing biallelic WNT10A mutations. However, patients with compound heterozygous mutations presented no significant difference in phenotypes compared to homozygous individuals. Anomalies in tooth morphology were frequently observed with heterozygous patients displaying hypodontia. No signs of SSPS, especially eyelids cysts, were detected in our cohort. Interestingly, extra-ectodermal signs consisted of skeletal, neurological and vascular anomalies, the latter suggesting a wider phenotypic spectrum associated with WNT10A mutations. Indeed, the Wnt pathway plays a crucial role in skeletal development, lipid metabolism, and neurogenesis, potentially explaining patient's clinical manifestations.journal article2017 Jan 202017 01 20importe

    Homozygous truncating variants in TBC1D23 cause pontocerebellar hypoplasia and alter cortical development

    No full text
    Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare recessive disorders with prenatal onset, characterized by hypoplasia of pons and cerebellum. Mutations in a small number of genes have been reported to cause PCH, and the vast majority of PCH cases are explained by mutations in TSEN54, which encodes a subunit of the tRNA splicing endonuclease complex. Here we report three families with homozygous truncating mutations in TBC1D23 who display moderate to severe intellectual disability and microcephaly. MRI data from available affected subjects revealed PCH, small normally proportioned cerebellum, and corpus callosum anomalies. Furthermore, through in utero electroporation, we show that downregulation of TBC1D23 affects cortical neuron positioning. TBC1D23 is a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs). Members of this protein family negatively regulate RAB proteins and modulate the signaling between RABs and other small GTPases, some of which have a crucial role in the trafficking of intracellular vesicles and are involved in neurological disorders. Here, we demonstrate that dense core vesicles and lysosomal trafficking dynamics are affected in fibroblasts harboring TBC1D23 mutation. We propose that mutations in TBC1D23 are responsible for a form of PCH with small, normally proportioned cerebellum and should be screened in individuals with syndromic pontocereballar hypoplasia.PMC559084
    corecore