29 research outputs found

    Using mixup as a regularizer can surprisingly improve accuracy and out-of-distribution robustness

    Get PDF
    We show that the effectiveness of the well celebrated Mixup can be further improved if instead of using it as the sole learning objective, it is utilized as an additional regularizer to the standard cross-entropy loss. This simple change not only improves accuracy but also significantly improves the quality of the predictive uncertainty estimation of Mixup in most cases under various forms of covariate shifts and out-of-distribution detection experiments. In fact, we observe that Mixup otherwise yields much degraded performance on detecting out-of-distribution samples possibly, as we show empirically, due to its tendency to learn models exhibiting high-entropy throughout; making it difficult to differentiate in-distribution samples from out-of-distribution ones. To show the efficacy of our approach (RegMixup), we provide thorough analyses and experiments on vision datasets (ImageNet & CIFAR-10/100) and compare it with a suite of recent approaches for reliable uncertainty estimation

    EC Agricultural Prices. Price Indices and absolute prices-Quarterly Statistics 1-1993

    Get PDF
    We propose MAD-GAN, an intuitive generalization to the Generative Adversarial Networks (GANs) and its conditional variants to address the well known problem of mode collapse. First, MAD-GAN is a multi-agent GAN architecture incorporating multiple generators and one discriminator. Second, to enforce that different generators capture diverse high probability modes, the discriminator of MAD-GAN is designed such that along with finding the real and fake samples, it is also required to identify the generator that generated the given fake sample. Intuitively, to succeed in this task, the discriminator must learn to push different generators towards different identifiable modes. We perform extensive experiments on synthetic and real datasets and compare MAD-GAN with different variants of GAN. We show high quality diverse sample generations for challenging tasks such as image-to-image translation and face generation. In addition, we also show that MAD-GAN is able to disentangle different modalities when trained using highly challenging diverse-class dataset (e.g. dataset with images of forests, icebergs, and bedrooms). In the end, we show its efficacy on the unsupervised feature representation task

    RanDumb: a simple approach that questions the efficacy of continual representation learning

    Get PDF
    We propose RanDumb to examine the efficacy of continual representation learning. RanDumb embeds raw pixels using a fixed random transform which approximates an RBF-Kernel, initialized before seeing any data, and learns a simple linear classifier on top. We present a surprising and consistent finding: RanDumb significantly outperforms the continually learned representations using deep networks across numerous continual learning benchmarks, demonstrating the poor performance of representation learning in these scenarios. RanDumb stores no exemplars and performs a single pass over the data, processing one sample at a time. It complements GDumb [39], operating in a lowexemplar regime where GDumb has especially poor performance. We reach the same consistent conclusions when RanDumb is extended to scenarios with pretrained models replacing the random transform with pretrained feature extractor. Our investigation is both surprising and alarming as it questions our understanding of how to effectively design and train models that require efficient continual representation learning, and necessitates a principled reinvestigation of the widely explored problem formulation itself. Our code is available here

    Diagnosing and Preventing Instabilities in Recurrent Video Processing.

    Get PDF
    Recurrent models are a popular choice for video enhancement tasks such as video denoising or super-resolution. In this work, we focus on their stability as dynamical systems and show that they tend to fail catastrophically at inference time on long video sequences. To address this issue, we (1) introduce a diagnostic tool which produces input sequences optimized to trigger instabilities and that can be interpreted as visualizations of temporal receptive fields, and (2) propose two approaches to enforce the stability of a model during training: constraining the spectral norm or constraining the stable rank of its convolutional layers. We then introduce Stable Rank Normalization for Convolutional layers (SRN-C), a new algorithm that enforces these constraints. Our experimental results suggest that SRN-C successfully enforces stablility in recurrent video processing models without a significant performance loss

    Make some noise: reliable and efficient single-step adversarial training

    Get PDF
    Recently, Wong et al. (2020) showed that adversarial training with single-step FGSM leads to a characteristic failure mode named catastrophic overfitting (CO), in which a model becomes suddenly vulnerable to multi-step attacks. Experimentally they showed that simply adding a random perturbation prior to FGSM (RS-FGSM) could prevent CO. However, Andriushchenko & Flammarion (2020) observed that RS-FGSM still leads to CO for larger perturbations, and proposed a computationally expensive regularizer (GradAlign) to avoid it. In this work, we methodically revisit the role of noise and clipping in single-step adversarial training. Contrary to previous intuitions, we find that using a stronger noise around the clean sample combined with \textit{not clipping} is highly effective in avoiding CO for large perturbation radii. We then propose Noise-FGSM (N-FGSM) that, while providing the benefits of single-step adversarial training, does not suffer from CO. Empirical analyses on a large suite of experiments show that N-FGSM is able to match or surpass the performance of previous state of-the-art GradAlign while achieving 3× speed-up

    Discovering class-specific pixels for weakly-supervised semantic segmentation

    No full text
    We propose an approach to discover class-specific pixels for the weakly-supervised semantic segmentation task. We show that properly combining saliency and attention maps allows us to obtain reliable cues capable of significantly boosting the performance. First, we propose a simple yet powerful hierarchical approach to discover the classagnostic salient regions, obtained using a salient object detector, which otherwise would be ignored. Second, we use fully convolutional attention maps to reliably localize the class-specific regions in a given image. We combine these two cues to discover classspecific pixels which are then used as an approximate ground truth for training a CNN. While solving the weakly supervised semantic segmentation task, we ensure that the image-level classification task is also solved in order to enforce the CNN to assign at least one pixel to each object present in the image. Experimentally, on the PASCAL VOC12 val and test sets, we obtain the mIoU of 60.8% and 61.9%, achieving the performance gains of 5.1% and 5.2% compared to the published state-of-the-art results. The code is made publicly available

    An impartial take to the CNN vs transformer robustness contest

    No full text
    Following the surge of popularity of Transformers in Computer Vision, several studies have attempted to determine whether they could be more robust to distribution shifts and provide better uncertainty estimates than Convolutional Neural Networks (CNNs). The almost unanimous conclusion is that they are, and it is often conjectured more or less explicitly that the reason of this supposed superiority is to be attributed to the self-attention mechanism. In this paper we perform extensive empirical analyses showing that recent state-of-the-art CNNs (particularly, ConvNeXt [20]) can be as robust and reliable or even sometimes more than the current state-of-the-art Transformers. However, there is no clear winner. Therefore, although it is tempting to state the definitive superiority of one family of architectures over another, they seem to enjoy similar extraordinary performances on a variety of tasks while also suffering from similar vulnerabilities such as texture, background, and simplicity biases
    corecore