83 research outputs found

    Nickel Manganite-Sodium Alginate Nano-Biocomposite for Temperature Sensing

    Get PDF
    Nanocrystalline nickel manganite (NiMn2O4) powder with a pure cubic spinel phase structure was synthesized via sol-gel combustion and characterized with XRD, FT-IR, XPS and SEM. The powder was mixed with sodium alginate gel to form a nano-biocomposite gel, dried at room temperature to form a thick film and characterized with FT-IR and SEM. DC resistance and AC impedance of sensor test structures obtained by drop casting the nano-biocomposite gel onto test interdigitated PdAg electrodes on an alumina substrate were measured in the temperature range of 20-50 degrees C at a constant relative humidity (RH) of 50% and at room temperature (25 degrees C) in the RH range of 40-90%. The material constant obtained from the measured decrease in resistance with temperature was determined to be 4523 K, while the temperature sensitivity at room temperature (25 degrees C) was -5.09%/K. Analysis of the complex impedance plots showed a dominant influence of grains. The decrease in complex impedance with increase in temperature confirmed the negative temperature coefficient effect. The grain resistance and grain relaxation frequency were determined using an equivalent circuit. The activation energy for conduction was determined as 0.45 eV from the temperature dependence of the grain resistance according to the small polaron hopping model, while the activation energy for relaxation was 0.43 eV determined from the Arrhenius dependence of the grain relaxation frequency on temperature

    Nanocrystalline iron-manganite (FeMnO3) applied for humidity sensing

    Get PDF
    Nanocrystalline iron manganite was synthesized using a sol-gel self-combustion method with glycine as fuel, followed by calcination at 900 Ā°C for 8 hours. Structural characterization was performed using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). It confirmed the formation of nanocrystalline iron-manganite with a perovskite structure. Humidity sensing properties of bulk and thick film samples of the obtained nanocrystalline iron manganite powder were analyzed. Organic vehicles were added to the powder to form a thick film paste that was screen printed on alumina substrate with test PdAg interdigitated electrodes. Impedance response of bulk and thick film samples was analyzed in a humidity chamber in the relative humidity range 30-90% in the frequency range 42 Hz to 1 MHz in view of applying iron-manganite for humidity sensing applications

    The effect of pH on visible-light photocatalytic properties of pseudobrookite nanoparticles

    Get PDF
    In this study, pseudobrookite (Fe2TiO5) nanoparticles were fabricated by a modified sol-gel method using Fe(NO3)39H2O and Ti(OC3H7)4 as starting reagents and ethanol as solvent. Oxalic acid was used as a chelating agent while cetyltrimethyammonium bromide (CTAB) and citric monohydrate were used as surfactants. Structral and morphological characterization using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the formation of pseudobrookite nanoparticles. As synthetized Fe2TiO5 nanoparticles were utilized as photocatalysts for decolorisation of Methylene blue (MB) under visible light irradiation. It was observed that the adsorption of MB onto Fe2TiO5 nanoparticles is strongly dependent on the solution pH. Maximum decolorozation was observed for Fe2TiO5 nanoparticles prepared with CTAB under alcaline conditions (pH=10.5)

    Electrospun Nickel Manganite (NiMn2O4) Nanocrystalline Fibers for Humidity and Temperature Sensing

    Get PDF
    Nickel manganite nanocrystalline fibers were obtained by electrospinning and subsequent calcination at 400 degrees C. As-spun fibers were characterized by TG/DTA, Scanning Electron Microscopy and FT-IR spectroscopy analysis. X-ray diffraction and FT-IR spectroscopy analysis confirmed the formation of nickel manganite with a cubic spinel structure, while N-2 physisorption at 77 K enabled determination of the BET specific surface area as 25.3 m(2)/g and (BJH) mesopore volume as 21.5 m(2)/g. The material constant (B) of the nanocrystalline nickel manganite fibers applied by drop-casting on test interdigitated electrodes on alumina substrate, dried at room temperature, was determined as 4379 K in the 20-50 degrees C temperature range and a temperature sensitivity of -4.95%/K at room temperature (25 degrees C). The change of impedance with relative humidity was monitored at 25 and 50 degrees C for a relative humidity (RH) change of 40 to 90% in the 42 Hz pi 1 MHz frequency range. At 100 Hz and 25 degrees C, the sensitivity of 327.36 +/- 80.12 k omega/%RH was determined, showing that nickel manganite obtained by electrospinning has potential as a multifunctional material for combined humidity and temperature sensing

    Structure, morphology and photocatalytic properties of CoxMg1-xFe2O4 (0<x<1) spinel ferrites obtained by sol-gel synthesis

    Get PDF
    Nanocrystalline cobalt magnesium ferrites with varying cobalt and magnesium content (CoxMg1-xFe2O4, 0<x<1) were synthesized using the sol-gel self-combustion method with citric acid as fuel, followed by calcination at 700 C for 2 hours. Structural characterization was performed using Xray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy. It confirmed the formation of agglomerated nanocrystalline ferrites with an inverse cubic spinel structure. The optical band gap energy was determined using UV/Vis spectrophotometry. It reduced with increased Co content. Visible light photocatalytic activity was tested using natural and artificial light sources through a series of experimental degradations of the methylene blue (MB) solution

    Photocatalytic degradation of methylene blue and oxytetracycline via sol-gel synthesized pseudobrookite

    Get PDF
    Fe2TiO5 nanoparticles were synthesized by modified sol-gel method using Fe(NO3)3Ɨ9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of water pollutants, methylene blue and the antibiotic Oxytetracycline (OTC) using natural sunlight irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of photocatalytic degradation of water pollutants were achived by changing the pH of the solution and changing the concentration of photocatalyst

    Structure and photocatalytic properties of sol-gel synthesized pseudobrookite

    Get PDF
    Fe2TiO5 nanopartcles were synthesized by modified sol-gel method with aid of Fe(NO3)3 9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of the antibiotic Oxytetracycline (OTC) using visible light irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of oxytetracycline photocatalytic degradation were achived by changing the pH of the solution and changing the concentration of photocatalyst

    Influence of Co2+ ions on photocatalytic properties of MgFe2O4 ferrites

    Get PDF
    In this work, spinel magnesium cobalt ferrites (CoxMg1-xFe2O4, x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by a sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as oxidizers and citric acid was used as a reducing agent. The effects of cobalt ions on structural and morphological properties were investigated and characterized by X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) spectroscopy. A cubic spinel structure formed with a varied distribution of cobalt and magnesium ions on tetrahedral and octahedral sites that depended on their content. All ferrite powders consisted of multigrain agglomerates. Optical properties were investigated by UV- vis spectrophotometry. The photocatalytic activity of as prepared samples was evaluated by measuring the rate of photodegradation reaction of methylene blue (MB) under visible light irradiation. After 240 min, compared to other samples, the sample labeled as Co0.1Mg0.9Fe2O4 showed the best rate of photodecomposition of MB resulting in reduction of 90% of its initial concentration

    Visible light photocatalytic activity of nanocrystalline CoxMg1-xFe2O4 (x = 0-1)

    Get PDF
    The sol-gel combustion method was applied for synthesis of spinel magnesium cobalt ferrites CoxMg1-xFe2O4, with varying cobalt and magnesium content, x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9. Magnesium nitrate, cobalt nitrate and iron nitrate were used as oxidizers and citric acid was used as a reducing agent. Structural and morphological properties of the obtained ferrite powders were investigated and characterized by X-ray diffraction (XRD), Raman spectroscopy, Field emission scanning electron microscope (FESEM) and Fourier transform infrared (FT-IR) spectroscopy. Optical properties were investigated by UV-VIS spectrophotometry. A cubic spinel structure with multigrain agglomerates formed. Visible light photocatalytic activity of the spinel ferrite powder samples was evaluated by measuring the rate of photodegradation reaction of methylene blue (MB). After 240 min Co0.1Mg0.9Fe2O4 showed the best rate of photodecomposition of MB resulting in 90% of its initial concentration in an alkaline environment
    • ā€¦
    corecore