83 research outputs found

    Prenylation inhibitors stimulate both estrogen receptor α transcriptional activity through AF-1 and AF-2 and estrogen receptor β transcriptional activity

    Get PDF
    INTRODUCTION: We showed in a previous study that prenylated proteins play a role in estradiol stimulation of proliferation. However, these proteins antagonize the ability of estrogen receptor (ER) α to stimulate estrogen response element (ERE)-dependent transcriptional activity, potentially through the formation of a co-regulator complex. The present study investigates, in further detail, how prenylated proteins modulate the transcriptional activities mediated by ERα and by ERβ. METHODS: The ERE-β-globin-Luc-SV-Neo plasmid was either stably transfected into MCF-7 cells or HeLa cells (MELN cells and HELN cells, respectively) or transiently transfected into MCF-7 cells using polyethylenimine. Cells deprived of estradiol were analyzed for ERE-dependent luciferase activity 16 hours after estradiol stimulation and treatment with FTI-277 (a farnesyltransferase inhibitor) or with GGTI-298 (a geranylgeranyltransferase I inhibitor). In HELN cells, the effect of prenyltransferase inhibitors on luciferase activity was compared after transient transfection of plasmids coding either the full-length ERα, the full-length ERβ, the AF-1-deleted ERα or the AF-2-deleted ERα. The presence of ERα was then detected by immunocytochemistry in either the nuclei or the cytoplasms of MCF-7 cells. Finally, Clostridium botulinum C3 exoenzyme treatment was used to determine the involvement of Rho proteins in ERE-dependent luciferase activity. RESULTS: FTI-277 and GGTI-298 only stimulate ERE-dependent luciferase activity in stably transfected MCF-7 cells. They stimulate both ERα-mediated and ERβ-mediated ERE-dependent luciferase activity in HELN cells, in the presence of and in the absence of estradiol. The roles of both AF-1 and AF-2 are significant in this effect. Nuclear ERα is decreased in the presence of prenyltransferase inhibitors in MCF-7 cells, again in the presence of and in the absence of estradiol. By contrast, cytoplasmic ERα is mainly decreased after treatment with FTI-277, in the presence of and in the absence of estradiol. The involvement of Rho proteins in ERE-dependent luciferase activity in MELN cells is clearly established. CONCLUSIONS: Together, these results demonstrate that prenylated proteins (at least RhoA, RhoB and/or RhoC) antagonize the ability of ERα and ERβ to stimulate ERE-dependent transcriptional activity, potentially acting through both AF-1 and AF-2 transcriptional activities

    Additive growth inhibitory effects of ibandronate and antiestrogens in estrogen receptor-positive breast cancer cell lines

    Get PDF
    INTRODUCTION: Bisphosphonates are inhibitors of osteoclast-mediated tumor-stimulated osteolysis, and they have become standard therapy for the management of bone metastases from breast cancer. These drugs can also directly induce growth inhibition and apoptosis of osteotropic cancer cells, including estrogen receptor-positive (ER+) breast cancer cells. METHODS: We examined the anti-proliferative properties of ibandronate on two ER+ breast cancer cell lines (MCF-7 and IBEP-2), and on one ER negative (ER-) cell line (MDA-MB-231). Experiments were performed in steroid-free medium to assess ER regulation and the effect of ibandronate in combination with estrogen or antiestrogens. RESULTS: Ibandronate inhibited cancer cell growth in a dose- and time-dependent manner (approximate IC(50): 10(-4 )M for MCF-7 and IBEP-2 cells; 3 × 10(-4 )M for MDA-MB-231 cells), partly through apoptosis induction. It completely abolished the mitogenic effect induced by 17β-estradiol in ER+ breast cancer cells, but affected neither ER regulation nor estrogen-induced progesterone receptor expression, as documented in MCF-7 cells. Moreover, ibandronate enhanced the growth inhibitory action of partial (4-hydroxytamoxifen) and pure (ICI 182,780, now called fluvestrant or Faslodex™) antiestrogens in estrogen-sensitive breast cancer cells. Combination analysis identified additive interactions between ibandronate and ER antagonists. CONCLUSION: These data constitute the first in vitro evidence for additive effects between ibandronate and antiestrogens, supporting their combined use for the treatment of bone metastases from breast cancer

    New targets for therapy in breast cancer: Farnesyltransferase inhibitors

    Get PDF
    Current systemic therapies for breast cancer are often limited by their nonspecific mechanism of action, unwanted toxicities on normal tissues, and short-term efficacy due to the emergence of drug resistance. However, identification of the molecular abnormalities in cancer, in particular the key proteins involved in abnormal cell growth, has resulted in development of various signal transduction inhibitor drugs as new treatment strategies against the disease. Protein farnesyltransferase inhibitors (FTIs) were originally designed to target the Ras signal transduction pathway, although it is now clear that several other intracellular proteins are dependent on post-translational farnesylation for their function. Preclinical data revealed that although FTIs inhibit the growth of ras-transformed cells, they are also potent inhibitors of a wide range of cancer cell lines that contain wild-type ras, including breast cancer cells. Additive or synergistic effects were observed when FTIs were combined with cytotoxic agents (in particular the taxanes) or endocrine therapies (tamoxifen). Phase I trials with FTIs have explored different schedules for prolonged administration, and dose-limiting toxicities included myelosuppression, gastrointestinal toxicity and neuropathy. Clinical efficacy against breast cancer was seen for the FTI tipifarnib in a phase II study. Based on promising preclinical data that suggest synergy with taxanes or endocrine therapy, combination clinical studies are now in progress to determine whether FTIs can add further to the efficacy of conventional breast cancer therapies

    Combined effect of CCND1 and COMT polymorphisms and increased breast cancer risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogens are crucial tumorigenic hormones, which impact the cell growth and proliferation during breast cancer development. Estrogens are metabolized by a series of enzymes including COMT, which converts catechol estrogens into biologically non-hazardous methoxyestrogens. Several studies have also shown the relationship between estrogen and cell cycle progression through activation of CCND1 transcription.</p> <p>Methods</p> <p>In this study, we have investigated the independent and the combined effects of commonly occurring CCND1 (Pro241Pro, A870G) and COMT (Met108/158Val) polymorphisms to breast cancer risk in two independent Caucasian populations from Ontario (1228 breast cancer cases and 719 population controls) and Finland (728 breast cancer cases and 687 population controls). Both COMT and CCND1 polymorphisms have been previously shown to impact on the enzymatic activity of the coded proteins.</p> <p>Results</p> <p>Here, we have shown that the high enzymatic activity genotype of CCND1<sup>High </sup>(AA) was associated with increased breast cancer risk in both the Ontario [OR: 1.3, 95%CI (1.0–1.69)] and the Finland sample [OR: 1.4, 95%CI (1.01–1.84)]. The heterozygous COMT<sup>Medium </sup>(MetVal) and the high enzymatic activity of COMT<sup>High </sup>(ValVal) genotype was also associated with breast cancer risk in Ontario cases, [OR: 1.3, 95%CI (1.07–1.68)] and [OR: 1.4, 95%CI (1.07–1.81)], respectively. However, there was neither a statistically significant association nor increased trend of breast cancer risk with COMT<sup>High </sup>(ValVal) genotypes in the Finland cases [OR: 1.0, 95%CI (0.73–1.39)]. In the combined analysis, the higher activity alleles of the COMT and CCND1 is associated with increased breast cancer risk in both Ontario [OR: <b>2.22</b>, 95%CI (1.49–3.28)] and Finland [OR: <b>1.73</b>, 95%CI (1.08–2.78)] populations studied. The trend test was statistically significant in both the Ontario and Finland populations across the genotypes associated with increasing enzymatic activity.</p> <p>Conclusion</p> <p>Using two independent Caucasian populations, we have shown a stronger combined effect of the two commonly occurring CCND1 and COMT genotypes in the context of breast cancer predisposition.</p

    Fulvestrant-induced expression of ErbB3 and ErbB4 receptors sensitizes oestrogen receptor-positive breast cancer cells to heregulin β1

    Get PDF
    Introduction We have previously reported that induction of epidermal growth factor receptor and ErbB2 in response to antihormonal agents may provide an early mechanism to allow breast cancer cells to evade the growth-inhibitory action of such therapies and ultimately drive resistant cell growth. More recently, the other two members of the ErbB receptor family, ErbB3 and ErbB4, have been implicated in antihormone resistance in breast cancer. In the present study, we have investigated whether induction of ErbB3 and/or ErbB4 may provide an alternative resistance mechanism to antihormonal action in a panel of four oestrogen receptor (ER)-positive breast cancer cell lines. Methods MCF-7, T47D, BT474 and MDAMB361 cell lines were exposed to fulvestrant (100 nM) for seven days, and effects on ErbB3/4 expression and signalling, as well as on cell growth, were assessed. Effects of heregulin β1 (HRGβ1) were also examined in the absence and presence of fulvestrant to determine the impact of ER blockade on the capacity of this ErbB3/4 ligand to promote signalling and cell proliferation. Results Fulvestrant potently reduced ER expression and transcriptional activity and significantly inhibited growth in MCF-7, T47D, BT474 and MDAMB361 cells. However, alongside this inhibitory activity, fulvestrant also consistently induced protein expression and activity of ErbB3 in MCF-7 and T47D cells and ErbB4 in BT474 and MDAMB361 cell lines. Consequently, fulvestrant treatment sensitised all cell lines to the actions of the ErbB3/4 ligand HRGβ1 with enhanced ErbB3/4-driven signalling activity, reexpression of cyclin D1 and significant increases in cell proliferation being observed when compared to untreated cells. Indeed, in T47D and MDAMB361 HRGβ1 was converted from a ligand having negligible or suppressive growth activity into one that potently promoted cell proliferation. Consequently, fulvestrant-mediated growth inhibition was completely overridden by HRGβ1 in all four cell lines. Conclusions These findings suggest that although antihormones such as fulvestrant may have potent acute growth-inhibitory activity in ER-positive breast cancer cells, their ability to induce and sensitise cells to growth factors may serve to reduce and ultimately limit their inhibitory activity
    • …
    corecore