39 research outputs found
Paroxysmal nocturnal hemoglobinuria and telomere length predicts response to immunosuppressive therapy in pediatric aplastic anemia
Acquired aplastic anemia is an immune-mediated disease characterized by severe defects in stem cell number resulting in hypocellular marrow and peripheral blood cytopenias. Minor paroxysmal nocturnal hemoglobinuria populations and a short telomere length were identified as predictive biomarkers of immunosuppressive therapy responsiveness in aplastic anemia. We enrolled 113 aplastic anemia patients (63 boys and 50 girls) in this study to evaluate their response to immunosuppressive therapy. The paroxysmal nocturnal hemoglobinuria populations and telomere length were detected by flow cytometry. Forty-seven patients (42%) carried a minor paroxysmal nocturnal hemoglobinuria population. The median telomere length of aplastic anemia patients was −0.99 standard deviation (SD) (range −4.01–+3.01 SD). Overall, 60 patients (53%) responded to immunosuppressive therapy after six months. Multivariate logistic regression analysis identified the absence of a paroxysmal nocturnal hemoglobinuria population and a shorter telomere length as independent unfavorable predictors of immunosuppressive therapy response at six months. The cohort was stratified into a group of poor prognosis (paroxysmal nocturnal hemoglobinuria negative and shorter telomere length; 37 patients) and good prognosis (paroxysmal nocturnal hemoglobinuria positive and/or longer telomere length; 76 patients), respectively. The response rates of the poor prognosis and good prognosis groups at six months were 19% and 70%, respectively (
Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women
Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery
Effect of oil droplet sizes of oil‐in‐water emulsion on the taste impressions of added tastants
By conducing organoleptic analysis, the authors investigated the effect of oil droplet size on human preference to the taste of oil‐in‐water (o/w) emulsions to which several tastants were added. Two singly dispersed o/w emulsions, different in oil droplet sizes, consisting of 10% triacilglycerol purified from tuna, sardine or soybean oil, 0.5% emulsifier and water were prepared by ceramic membrane filtration. Organoleptic analysis showed that the impressions of sweetness, bitterness and umami, which were developed by addition of certain taste substances, were different between o/w emulsions with different oil droplet sizes. The results of two‐bottle choice tests, which were carried out using olfactory‐blocked mice, showed that o/w emulsions with 1.00‐µm droplets, with added sweet or bitter substances, were preferred to emulsion with 5.50‐µm droplets. These results suggest that the droplet size of o/w emulsion remarkably influences certain taste impressions created by added taste substances
Aberrant DNA methylation is associated with a poor outcome in Juvenile myelomonocytic leukemia
Juvenile myelomonocytic leukemia (JMML), an overlap of myelodysplastic/myeloproliferative neoplasm, is an intractable pediatric myeloid neoplasm. Epigenetic regulation of transcription, particularly by CpG methylation, plays an important role in tumor progression, mainly by repressing tumor-suppressor genes. To clarify the clinical importance of aberrant DNA methylation, we studied the hypermethylation status of 16 target genes in the genomes of 92 patients with JMML by bisulfite conversion and the pryosequencing technique. Among 16 candidate genes, BMP4, CALCA, CDKN2A, and RARB exhibited significant hypermethylation in 72% (67/92) of patients. Based on the number of hypermethylated genes, patients were stratified into three cohorts based on an aberrant methylation score (AMS) of 0, 1-2, or 3-4. In the AMS 0 cohort, the 5-year overall survival (OS) and transplantation-free survival (TFS) were good (69% and 76%, respectively). In the AMS 1-2 cohort, the 5-year OS was comparable to that in the AMS 0 cohort (68%), whereas TFS was poor (6%). In the AMS 3-4 cohort, 5-year OS and TFS were markedly low (8% and 0%, respectively). Epigenetic analysis provides helpful information for clinicians to select treatment strategies for patients with JMML. For patients with AMS 3-4 in whom hematopoietic stem cell transplantation does not improve the prognosis, alternative therapies, including DNA methyltransferase inhibitors and new molecular-targeting agents, should be established as treatment options
Regulation of hepatic branched-chain α-ketoacid dehydrogenase complex in rats fed a high-fat diet
Branched-chain α-ketoacid (BCKA) dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of BCKA catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal models. In this study, we examined the regulation of hepatic BCKDC in rats with diet-induced obesity (DIO). Rats were fed a control or a 60% of energy high-fat diet (HFD) for twelve weeks. Concentrations of blood components and the activities and protein amounts of hepatic BCKDC and its specific kinase (BDK) were measured. The concentrations of plasma glucose, insulin, and corticosterone were significantly elevated in DIO rats compared to those fed the control diet, suggestive of insulin resistance. Blood BCAA concentrations were not increased. The activity of hepatic BCKDC that was present in the active form in the liver was higher in DIO rats compared to controls, although the total activity and the enzyme amount were not different between two diet groups. The activity of hepatic BDK and the abundance of BDK bound to the BCKDC were decreased in DIO rats. The total amount of hepatic BDK was also significantly decreased in DIO rats. In rats made obese through HFD feeding, in contrast to prior studies in rat models of type 2 diabetes, hepatic BDK was down-regulated and thereby hepatic BCKDC was activated, suggesting that DIO promotes liver BCKA catabolism. In this model there was no evidence that increased blood BCAAs drive DIO-associated insulin resistance, since concentrations of BCAAs were not altered by DIO