450 research outputs found
Total ozone changes in the 1987 Antarctic ozone hole
The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed
Dynamical matrix of two-dimensional electron crystals
In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a
rich phase diagram with broken translational symmetry phases such as Wigner,
bubble, and stripe crystals. In this paper, we derive a method to get the
dynamical matrix of these crystals from a calculation of the density response
function performed in the Generalized Random Phase Approximation (GRPA). We
discuss the validity of our method by comparing the dynamical matrix calculated
from the GRPA with that obtained from standard elasticity theory with the
elastic coefficients obtained from a calculation of the deformation energy of
the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11
postscripts figure
Two types of nematicity in the phase diagram of the cuprate superconductor YBaCuO
Nematicity has emerged as a key feature of cuprate superconductors, but its
link to other fundamental properties such as superconductivity, charge order
and the pseudogap remains unclear. Here we use measurements of transport
anisotropy in YBaCuO to distinguish two types of nematicity. The
first is associated with short-range charge-density-wave modulations in a
doping region near . It is detected in the Nernst coefficient, but
not in the resistivity. The second type prevails at lower doping, where there
are spin modulations but no charge modulations. In this case, the onset of
in-plane anisotropy - detected in both the Nernst coefficient and the
resistivity - follows a line in the temperature-doping phase diagram that
tracks the pseudogap energy. We discuss two possible scenarios for the latter
nematicity.Comment: 8 pages and 7 figures. Main text and supplementary material now
combined into single articl
Anisotropic states of two-dimensional electrons in high magnetic fields
We study the collective states formed by two-dimensional electrons in Landau
levels of index near half-filling. By numerically solving the
self-consistent Hartree-Fock (HF) equations for a set of oblique
two-dimensional lattices, we find that the stripe state is an anisotropic
Wigner crystal (AWC), and determine its precise structure for varying values of
the filling factor. Calculating the elastic energy, we find that the shear
modulus of the AWC is small but finite (nonzero) within the HF approximation.
This implies, in particular, that the long-wavelength magnetophonon mode in the
stripe state vanishes like as in an ordinary Wigner crystal, and not
like as was found in previous studies where the energy of shear
deformations was neglected.Comment: minor corrections; 5 pages, 4 figures; version to be published in
Physical Review Letter
Universal properties of correlation transfer in integrate-and-fire neurons
One of the fundamental characteristics of a nonlinear system is how it
transfers correlations in its inputs to correlations in its outputs. This is
particularly important in the nervous system, where correlations between
spiking neurons are prominent. Using linear response and asymptotic methods for
pairs of unconnected integrate-and-fire (IF) neurons receiving white noise
inputs, we show that this correlation transfer depends on the output spike
firing rate in a strong, stereotyped manner, and is, surprisingly, almost
independent of the interspike variance. For cells receiving heterogeneous
inputs, we further show that correlation increases with the geometric mean
spiking rate in the same stereotyped manner, greatly extending the generality
of this relationship. We present an immediate consequence of this relationship
for population coding via tuning curves
Low-Frequency Quantum Oscillations due to Strong Electron Correlations
The normal-state energy spectrum of the two-dimensional - model in a
homogeneous perpendicular magnetic field is investigated. The density of states
at the Fermi level as a function of the inverse magnetic field
reveals oscillations in the range of hole concentrations . The
oscillations have both high- and low-frequency components. The former
components are connected with large Fermi surfaces, while the latter with van
Hove singularities in the Landau subbands, which traverse the Fermi level with
changing . The singularities are related to bending the Landau subbands due
to strong electron correlations. Frequencies of these components are of the
same order of magnitude as quantum oscillation frequencies observed in
underdoped cuprates.Comment: 10 pages, 3 figures, Proc. NSS-2013, Yalta. arXiv admin note: text
overlap with arXiv:1308.056
Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBaCuO: Fermi-Surface Reconstruction by Bidirectional Charge Order
The Seebeck coefficient of the cuprate YBaCuO was
measured in magnetic fields large enough to suppress superconductivity, at hole
dopings and , for heat currents along the and
directions of the orthorhombic crystal structure. For both directions,
decreases and becomes negative at low temperature, a signature that the Fermi
surface undergoes a reconstruction due to broken translational symmetry. Above
a clear threshold field, a strong new feature appears in , for
conduction along the axis only. We attribute this feature to the onset of
3D-coherent unidirectional charge-density-wave modulations seen by x-ray
diffraction, also along the axis only. Because these modulations have a
sharp onset temperature well below the temperature where starts to drop
towards negative values, we infer that they are not the cause of Fermi-surface
reconstruction. Instead, the reconstruction must be caused by the quasi-2D
bidirectional modulations that develop at significantly higher temperature.Comment: 7 pages, 5 figure
The Fermi surface and f-valence electron count of UPt3
Combining old and new de Haas-van Alphen (dHvA) and magnetoresistance data,
we arrive at a detailed picture of the Fermi surface of the heavy fermion
superconductor UPt3. Our work was partially motivated by a new proposal that
two 5f valence electrons per formula unit in UPt3 are localized by correlation
effects -- agreement with previous dHvA measurements of the Fermi surface was
invoked in its support. Comprehensive comparison with our new observations
shows that this 'partially localized' model fails to predict the existence of a
major sheet of the Fermi surface, and is therefore less compatible with
experiment than the originally proposed 'fully itinerant' model of the
electronic structure of UPt3. In support of this conclusion, we offer a more
complete analysis of the fully itinerant band structure calculation, where we
find a number of previously unrecognized extremal orbits on the Fermi surface.Comment: 23 pages, 12 figures, latex, iopart clas
Enhancement of the Nernst effect by stripe order in a high-Tc superconductor
The Nernst effect in metals is highly sensitive to two kinds of phase
transition: superconductivity and density-wave order. The large positive Nernst
signal observed in hole-doped high-Tc superconductors above their transition
temperature Tc has so far been attributed to fluctuating superconductivity.
Here we show that in some of these materials the large Nernst signal is in fact
caused by stripe order, a form of spin / charge modulation which causes a
reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of
stripe order causes the Nernst signal to go from small and negative to large
and positive, as revealed either by lowering the hole concentration across the
quantum critical point in Nd-LSCO, or lowering the temperature across the
ordering temperature in Eu-LSCO. In the latter case, two separate peaks are
resolved, respectively associated with the onset of stripe order at high
temperature and superconductivity near Tc. This sensitivity to Fermi-surface
reconstruction makes the Nernst effect a promising probe of broken symmetry in
high-Tc superconductors
- …