138 research outputs found

    Molecular characterization of Pvr9 that confers a hypersensitive response to Pepper mottle virus (a potyvirus) in Nicotiana benthamiana

    Get PDF
    AbstractThere are some R genes against potyviruses which were mapped in pepper. However, none of them has been characterized at the molecular level. In this study, we characterized Pvr9 which is an Rpi-blb2 ortholog from pepper and confers a hypersensitive response to Pepper mottle virus (PepMoV) in a transient expression system in Nicotiana benthamiana. This gene putatively encoded for 1298 amino acids and is located on pepper chromosome 6. PepMoV NIb was the elicitor of the Pvr9-mediated hypersensitive response. NIb from several other potyviruses also elicited the hypersensitive response. Inoculation of pepper with PepMoV resulted in a minor increase in Pvr9 transcription in the resistant cultivar CM334 and a slight down-regulation in the susceptible cultivar Floral Gem. The 5โ€ฒ upstream region of Pvr9 from cultivar CM334 had higher transcription activity than the region from cultivar Floral Gem. The cultivars CM334 and Floral Gem had non-functional Pvr9 homologs with loss-of-function mutations

    SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the full genome sequences of <it>Saccharomyces cerevisiae</it> were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP) was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed.</p> <p>Results</p> <p>The Seoul National University Genome Browser (SNUGB) integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets) and 34 plant and animal (38 datasets) species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion.</p> <p>Conclusion</p> <p>The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site <url>http://genomebrowser.snu.ac.kr/</url>.</p

    dbCRY: aWeb-based comparative and evolutionary genomics platform for blue-light receptors

    Get PDF
    Cryptochromes are flavoproteins that play a central role in the circadian oscillations of all living organisms except archaea. Cryptochromes are clustered into three subfamilies: plant-type cryptochromes, animal-type cryptochromes and cryptochrome-DASH proteins. These subfamilies are composed of photolyase/cryptochrome superfamily with 6โ€“4 photolyase and cyclobutane pyrimidine dimer photolyase. Cryptochromes have conserved domain architectures with two distinct domains, an N-terminal photolyase-related domain and a C-terminal domain. Although the molecular function and domain architecture of cryptochromes are conserved, their molecular mechanisms differ between plants and animals. Thus, cryptochromes are one of the best candidates for comparative and evolutionary studies. Here, we have developed a Web-based platform for comparative and evolutionary studies of cryptochromes, dbCRY (http://www.dbcryptochrome.org/). A pipeline built upon the consensus domain profile was applied to 1438 genomes and identified 1309 genes. To support comparative and evolutionary genomics studies, the Web interface provides diverse functions such as (i) browsing by species, (ii) protein domain analysis, (iii) multiple sequence alignment, (iv) homology search and (v) extended analysis opportunities through the implementation of Favorite Browser powered by the Comparative Fungal Genomics Platform 2.0 (CFGP 2.0; http://cfgp.snu.ac.kr/). dbCRY would serve as a standardized and systematic solution for cryptochrome genomics studies.OAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000005113/9SEQ:9PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000005113ADJUST_YN:NEMP_ID:A077085DEPT_CD:517CITE_RATE:4.2FILENAME:db-cry.pdfDEPT_NM:์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€SCOPUS_YN:YCONFIRM:

    Towards pathogenomics: a web-based resource for pathogenicity islands

    Get PDF
    Pathogenicity islands (PAIs) are genetic elements whose products are essential to the process of disease development. They have been horizontally (laterally) transferred from other microbes and are important in evolution of pathogenesis. In this study, a comprehensive database and search engines specialized for PAIs were established. The pathogenicity island database (PAIDB) is a comprehensive relational database of all the reported PAIs and potential PAI regions which were predicted by a method that combines feature-based analysis and similarity-based analysis. Also, using the PAI Finder search application, a multi-sequence query can be analyzed onsite for the presence of potential PAIs. As of April 2006, PAIDB contains 112 types of PAIs and 889 GenBank accessions containing either partial or all PAI loci previously reported in the literature, which are present in 497 strains of pathogenic bacteria. The database also offers 310 candidate PAIs predicted from 118 sequenced prokaryotic genomes. With the increasing number of prokaryotic genomes without functional inference and sequenced genetic regions of suspected involvement in diseases, this web-based, user-friendly resource has the potential to be of significant use in pathogenomics. PAIDB is freely accessible at

    Evolution of ribosomal DNA-derived satellite repeat in tomato genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tandemly repeated DNA, also called as satellite DNA, is a common feature of eukaryotic genomes. Satellite repeats can expand and contract dramatically, which may cause genome size variation among genetically-related species. However, the origin and expansion mechanism are not clear yet and needed to be elucidated.</p> <p>Results</p> <p>FISH analysis revealed that the satellite repeat showing homology with intergenic spacer (IGS) of rDNA present in the tomato genome. By comparing the sequences representing distinct stages in the divergence of rDNA repeat with those of canonical rDNA arrays, the molecular mechanism of the evolution of satellite repeat is described. Comprehensive sequence analysis and phylogenetic analysis demonstrated that a long terminal repeat retrotransposon was interrupted into each copy of the 18S rDNA and polymerized by recombination rather than transposition via an RNA intermediate. The repeat was expanded through doubling the number of IGS into the 25S rRNA gene, and also greatly increasing the copy number of type I subrepeat in the IGS of 25-18S rDNA by segmental duplication. Homogenization to a single type of subrepeat in the satellite repeat was achieved as the result of amplifying copy number of the type I subrepeat but eliminating neighboring sequences including the type II subrepeat and rRNA coding sequence from the array. FISH analysis revealed that the satellite repeats are commonly present in closely-related <it>Solanum </it>species, but vary in their distribution and abundance among species.</p> <p>Conclusion</p> <p>These results represent that the dynamic satellite repeats were originated from intergenic spacer of rDNA unit in the tomato genome. This result could serve as an example towards understanding the initiation and the expansion of the satellite repeats in complex eukaryotic genome.</p

    Suppression or Activation of Immune Responses by Predicted Secreted Proteins of the Soybean Rust Pathogen Phakopsora pachyrhizi

    Get PDF
    Rust fungi, such as the soybean rust pathogen Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are hyphal structures intimately associated with host-plant cell membranes. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characterization of effector proteins of rust fungi is important for understanding mechanisms that underlie their virulence and pathogenicity. Hundreds of candidate effector proteins have been predicted for rust pathogens, but it is not clear how to prioritize these effector candidates for further characterization. There is a need for high-throughput approaches for screening effector candidates to obtain experimental evidence for effector-like functions, such as the manipulation of host immune systems. We have focused on identifying effector candidates with immune-related functions in the soybean rust fungus P. pachyrhizi. To facilitate the screening of many P. pachyrhizi effector candidates (named PpECs), we used heterologous expression systems, including the bacterial type III secretion system, Agrobacterium infiltration, a plant virus, and a yeast strain, to establish an experimental pipeline for identifying PpECs with immune-related functions and establishing their subcellular localizations. Several PpECs were identified that could suppress or activate immune responses in nonhost Nicotiana benthamiana, N. tabacum, Arabidopsis, tomato, or pepper plants

    Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no dedicated database available for Expressed Sequence Tags (EST) of the chili pepper (<it>Capsicum annuum</it>), although the interest in a chili pepper EST database is increasing internationally due to the nutritional, economic, and pharmaceutical value of the plant. Recent advances in high-throughput sequencing of the ESTs of chili pepper cv. Bukang have produced hundreds of thousands of complementary DNA (cDNA) sequences. Therefore, a chili pepper EST database was designed and constructed to enable comprehensive analysis of chili pepper gene expression in response to biotic and abiotic stresses.</p> <p>Results</p> <p>We built the Pepper EST database to mine the complexity of chili pepper ESTs. The database was built on 122,582 sequenced ESTs and 116,412 refined ESTs from 21 pepper EST libraries. The ESTs were clustered and assembled into virtual consensus cDNAs and the cDNAs were assigned to metabolic pathway, Gene Ontology (GO), and MIPS Functional Catalogue (FunCat). The Pepper EST database is designed to provide a workbench for (i) identifying unigenes in pepper plants, (ii) analyzing expression patterns in different developmental tissues and under conditions of stress, and (iii) comparing the ESTs with those of other members of the <it>Solanaceae </it>family. The Pepper EST database is freely available at <url>http://genepool.kribb.re.kr/pepper/</url>.</p> <p>Conclusion</p> <p>The Pepper EST database is expected to provide a high-quality resource, which will contribute to gaining a systemic understanding of plant diseases and facilitate genetics-based population studies. The database is also expected to contribute to analysis of gene synteny as part of the chili pepper sequencing project by mapping ESTs to the genome.</p

    Comparative analysis of de novo genomes reveals dynamic intra-species divergence of NLRs in pepper

    Get PDF
    Background Peppers (Capsicum annuum L.) containing distinct capsaicinoids are the most widely cultivated spices in the world. However, extreme genomic diversity among species represents an obstacle to breeding pepper. Results Here, we report de novo genome assemblies of Capsicum annuum Early Calwonder (non-pungent, ECW) and Small Fruit (pungent, SF) along with their annotations. In total, we assembled 2.9ย Gb of ECW and SF genome sequences, representing over 91% of the estimated genome sizes. Structural and functional annotation of the two pepper genomes generated about 35,000 protein-coding genes each, of which 93% were assigned putative functions. Comparison between newly and publicly available pepper gene annotations revealed both shared and specific gene content. In addition, a comprehensive analysis of nucleotide-binding and leucine-rich repeat (NLR) genes through whole-genome alignment identified five significant regions of NLR copy number variation (CNV). Detailed comparisons of those regions revealed that these CNVs were generated by intra-specific genomic variations that accelerated diversification of NLRs among peppers. Conclusions Our analyses unveil an evolutionary mechanism responsible for generating CNVs of NLRs among pepper accessions, and provide novel genomic resources for functional genomics and molecular breeding of disease resistance in Capsicum species.This study was supported by a grant from the Agricultural Genome Center of the Next Generation BioGreen 21 Program of RDA (Project No. PJ013153) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (No. 2018R1A5A1023599 [SRC]) to D.C., and by the 2020 Research Fund of the University of Seoul to S.K. Theses funding bodies had no role in the study design, data collection, analysis, and preparation of the manuscript

    Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    Get PDF
    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide diversity (ฯ€) and Tajimaโ€™s D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive ฯ€ and Tajimaโ€™s D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) โ‰ฅ0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9โ€“2 SNPs per haplotype). Genome-wide association study of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 genome-wide SNPs significantly associated. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future genome-wide association study of economically important traits in C. baccatum peppers

    An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum)

    Get PDF
    Most agricultural traits are controlled by quantitative trait loci (QTLs); however, there are few studies on QTL mapping of horticultural traits in pepper (Capsicum spp.) due to the lack of high-density molecular maps and the sequence information. In this study, an ultra-high-density map and 120 recombinant inbred lines (RILs) derived from a cross between C. annuum 'Perennial' and C. annuum 'Dempsey' were used for QTL mapping of horticultural traits. Parental lines and RILs were resequenced at 18x and 1x coverage, respectively. Using a sliding window approach, an ultra-high-density bin map containing 2,578 bins was constructed. The total map length of the map was 1,372 cM, and the average interval between bins was 0.53 cM. A total of 86 significant QTLs controlling 17 horticultural traits were detected. Among these, 32 QTLs controlling 13 traits were major QTLs. Our research shows that the construction of bin maps using low-coverage sequence is a powerful method for QTL mapping, and that the short intervals between bins are helpful for fine-mapping of QTLs. Furthermore, bin maps can be used to improve the quality of reference genomes by elucidating the genetic order of unordered regions and anchoring unassigned scaffolds to linkage groups.OAIID:RECH_ACHV_DSTSH_NO:T201625248RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A076900CITE_RATE:5.267FILENAME:DNA research(2016) An ultra high density bin map facilitates high throughput QTL mapping in pepper.pdfDEPT_NM:์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/56a2d8bc-c985-47f7-a01c-70d1a2f88513/linkCONFIRM:
    • โ€ฆ
    corecore