25 research outputs found

    Constraints on the dust size distributions in the HD 163296 disk from the difference of the apparent dust ring widths between two ALMA Bands

    Full text link
    The dust size in protoplanetary disks is a crucial parameter for understanding planet formation, while the observational constraints on dust size distribution have large uncertainties. In this study, we present a new method to constrain the dust size distribution from the dust spatial distribution, utilizing the fact that larger dust grains are more spatially localized. We analyze the ALMA Band 6 (1.25 mm) and Band 4 (2.14 mm) high-resolution images and constrain the dust size distribution in the two rings of the HD 163296 disk. We find that the outer ring at 100 au appears narrower at the longer wavelengths, while the inner ring at 67 au appears to have similar widths across the two wavelengths. We model dust rings trapped at gas pressure maxima, where the dust grains follow a power-law size distribution, and the dust grains of a specific size follow a Gaussian spatial distribution with the width depending on the grain size. By comparing the observations with the models, we constrain the maximum dust size amaxa_{\mathrm{max}} and the exponent of the dust size distribution pp. We constrain that 0.9 mm<amax<5 mm0.9 \ \mathrm{mm} < a_{\mathrm{max}} < 5 \ \mathrm{mm} and p3×101 mmp 3 \times 10^1 \ \mathrm{mm} and 3.4<p<3.73.4 < p < 3.7 in the outer ring. The larger maximum dust size in the outer ring implies a spatial dependency in dust growth, potentially influencing the formation location of the planetesimals. We further discuss the turbulence strength α\alpha derived from the constrained dust spatial distribution, assuming equilibrium between turbulent diffusion and accumulation of dust grains.Comment: 29 pages, 16 figures. Accepted for publication in Ap

    VLBI observations of the most radio-loud, narrow-line quasar SDSS J094857.3+002225

    Get PDF
    We observed the narrow-line quasar SDSS J094857.3+002225, which has the highest known radio loudness for a narrow-line Seyfert~1 galaxy (NLS1), at 1.7--15.4 GHz with the Very Long Baseline Array (VLBA). This is the first very-long-baseline interferometry (VLBI) investigation for a radio-loud NLS1. We independently found very high brightness temperatures from (1) its compactness in a VLBA image and (2) flux variation among the VLBA observation, our other observations with the VLBA, and the Very Large Array (VLA). A Doppler factor larger than 2.7--5.5 was required to meet an intrinsic limit of brightness temperature in the rest frame. This is evidence for highly relativistic nonthermal jets in an NLS1. We suggest that the Doppler factor is one of the most crucial parameters determining the radio loudness of NLS1s. The accretion disk of SDSS J094857.3+002225 is probably in the very high state, rather than the high/soft state, by analogy with X-ray binaries with strong radio outbursts and superluminal jets such as GRS 1915+105.Comment: 6 pages, 2 figures, accepted for publication in PAS

    Very Long Baseline Array Imaging of Parsec-scale Radio Emissions in Nearby Radio-quiet Narrow-line Seyfert 1 Galaxies

    Get PDF
    We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz (18cm) with milli-arcsecond resolution. This is the first systematic very long baseline interferometry (VLBI) study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of >~5x10^6 K and contain radio cores with high brightness temperatures of >6x10^7 K, indicating a nonthermal process driven by jet-producing central engines as is observed in radio-loud NLS1s and other active galactic nucleus (AGN) classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions (<~300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of <~10^7 M_sun.Comment: 12 pages, 3 figures, 3 tables, accepted for publication in Ap

    Short-Term Variability of PKS1510-089

    Get PDF
    We searched a short-term radio variability in an active galactic nucleus PKS 1510-089. A daily flux monitoring for 143 days at 8.4 GHz was performed, and VLBI observations at 8.4, 22, and 43 GHz were carried out 4 times during the flux monitoring period. As a result, variability with time scale of 20 to 30 days was detected. The variation patterns were well alike on three frequencies, moreover those at 22 and 43 GHz were synchronized. These properties support that this short-term variability is an intrinsic one. The Doppler factor estimated from the variability time scale is 47. Since the Doppler factor is not extraordinary large for AGN, such intrinsic variability with time scale less than 30 days would exist in other AGNs.Comment: 14 pages, 4 figure

    Collimation, Acceleration and Recollimation Shock in the Jet of Gamma-Ray-emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy 1H 0323+342

    Get PDF
    We investigated the detailed radio structure of the jet of 1H 0323+342 using high-resolution multi-frequency Very Long Baseline Array observations. This source is known as the nearest γ\gamma-ray emitting radio-loud narrow-line Seyfert 1 (NLS1) galaxy. We discovered that the morphology of the inner jet is well characterized by a parabolic shape, indicating the jet being continuously collimated near the jet base. On the other hand, we found that the jet expands more rapidly at larger scales, resulting in a conical-like shape. The location of the "collimation break" is coincident with a bright quasi-stationary feature at 7 mas from core (corresponding to a deprojected distance of the order of \sim100pc), where the jet width locally contracts together with highly polarized signals, suggesting a recollimation shock. We found that the collimation region is coincident with the region where the jet speed gradually accelerates, suggesting the coexistence of the jet acceleration and collimation zone, ending up with the recollimation shock, which could be a potential site of high-energy γ\gamma-ray flares detected by the Fermi-LAT. Remarkably, these observational features of the 1H 0323+342 jet are overall very similar to those of the nearby radio galaxy M87 and HST-1 as well as some blazars, suggesting that a common jet formation mechanism might be at work. Based on the similarity of the jet profile between the two sources, we also briefly discuss the mass of the central black hole of 1H 0323+342, which is also still highly controversial on this source and NLS1s in general.Comment: Accepted for publication in ApJ. 15pages, 9 figure

    Japanese VLBI Network observations of radio-loud narrow-line Seyfert 1 galaxies

    Get PDF
    We performed phase-reference very long baseline interferometry (VLBI) observations on five radio-loud narrow-line Seyfert 1 galaxies (NLS1s) at 8.4 GHz with the Japanese VLBI Network (JVN). Each of the five targets (RXS J08066+7248, RXS J16290+4007, RXS J16333+4718, RXS J16446+2619, and B3 1702+457) in milli-Jansky levels were detected and unresolved in milli-arcsecond resolutions, i.e., with brightness temperatures higher than 10^7 K. The nonthermal processes of active galactic nuclei (AGN) activity, rather than starbursts, are predominantly responsible for the radio emissions from these NLS1s. Out of the nine known radio-loud NLS1s, including the ones chosen for this study, we found that the four most radio-loud objects exclusively have inverted spectra. This suggests a possibility that these NLS1s are radio-loud due to Doppler beaming, which can apparently enhance both the radio power and the spectral frequency.Comment: 8 pages, 2 figures, accepted for publication in PAS

    VLBI Detections of Parsec-Scale Nonthermal Jets in Radio-Loud Broad Absorption Line Quasars

    Get PDF
    We conducted radio detection observations at 8.4 GHz for 22 radio-loud broad absorption line (BAL) quasars, selected from the Sloan Digital Sky Survey (SDSS) Third Data Release, by a very-long-baseline interferometry (VLBI) technique. The VLBI instrument we used was developed by the Optically ConnecTed Array for VLBI Exploration project (OCTAVE), which is operated as a subarray of the Japanese VLBI Network (JVN). We aimed at selecting BAL quasars with nonthermal jets suitable for measuring their orientation angles and ages by subsequent detailed VLBI imaging studies to evaluate two controversial issues of whether BAL quasars are viewed nearly edge-on, and of whether BAL quasars are in a short-lived evolutionary phase of quasar population. We detected 20 out of 22 sources using the OCTAVE baselines, implying brightness temperatures greater than 10^5 K, which presumably come from nonthermal jets. Hence, BAL outflows and nonthermal jets can be generated simultaneously in these central engines. We also found four inverted-spectrum sources, which are interpreted as Doppler-beamed, pole-on-viewed relativistic jet sources or young radio sources: single edge-on geometry cannot describe all BAL quasars. We discuss the implications of the OCTAVE observations for investigations for the orientation and evolutionary stage of BAL quasars.Comment: 10 pages, no figure, 3 tables, accepted for publication in PAS
    corecore