7,835 research outputs found
Evidence for self-interaction of charge distribution in charge-coupled devices
Charge-coupled devices (CCDs) are widely used in astronomy to carry out a
variety of measurements, such as for flux or shape of astrophysical objects.
The data reduction procedures almost always assume that ther esponse of a given
pixel to illumination is independent of the content of the neighboring pixels.
We show evidence that this simple picture is not exact for several CCD sensors.
Namely, we provide evidence that localized distributions of charges (resulting
from star illumination or laboratory luminous spots) tend to broaden linearly
with increasing brightness by up to a few percent over the whole dynamic range.
We propose a physical explanation for this "brighter-fatter" effect, which
implies that flatfields do not exactly follow Poisson statistics: the variance
of flatfields grows less rapidly than their average, and neighboring pixels
show covariances, which increase similarly to the square of the flatfield
average. These covariances decay rapidly with pixel separation. We observe the
expected departure from Poisson statistics of flatfields on CCD devices and
show that the observed effects are compatible with Coulomb forces induced by
stored charges that deflect forthcoming charges. We extract the strength of the
deflections from the correlations of flatfield images and derive the evolution
of star shapes with increasing flux. We show for three types of sensors that
within statistical uncertainties,our proposed method properly bridges
statistical properties of flatfields and the brighter-fatter effect
Two-qutrit Entanglement Witnesses and Gell-Mann Matrices
The Gell-Mann matrices for Lie algebra su(3) are the natural basis
for the Hilbert space of Hermitian operators acting on the states of a
three-level system(qutrit). So the construction of EWs for two-qutrit states by
using these matrices may be an interesting problem. In this paper, several
two-qutrit EWs are constructed based on the Gell-Mann matrices by using the
linear programming (LP) method exactly or approximately. The decomposability
and non-decomposability of constructed EWs are also discussed and it is shown
that the -diagonal EWs presented in this paper are all decomposable
but there exist non-decomposable ones among -non-diagonal EWs.Comment: 25 page
Detecting multipartite entanglement
We discuss the problem of determining whether the state of several quantum
mechanical subsystems is entangled. As in previous work on two subsystems we
introduce a procedure for checking separability that is based on finding state
extensions with appropriate properties and may be implemented as a semidefinite
program. The main result of this work is to show that there is a series of
tests of this kind such that if a multiparty state is entangled this will
eventually be detected by one of the tests. The procedure also provides a means
of constructing entanglement witnesses that could in principle be measured in
order to demonstrate that the state is entangled.Comment: 9 pages, REVTE
Analyzing First-Person Stories Based on Socializing, Eating and Sedentary Patterns
First-person stories can be analyzed by means of egocentric pictures acquired
throughout the whole active day with wearable cameras. This manuscript presents
an egocentric dataset with more than 45,000 pictures from four people in
different environments such as working or studying. All the images were
manually labeled to identify three patterns of interest regarding people's
lifestyle: socializing, eating and sedentary. Additionally, two different
approaches are proposed to classify egocentric images into one of the 12 target
categories defined to characterize these three patterns. The approaches are
based on machine learning and deep learning techniques, including traditional
classifiers and state-of-art convolutional neural networks. The experimental
results obtained when applying these methods to the egocentric dataset
demonstrated their adequacy for the problem at hand.Comment: Accepted at First International Workshop on Social Signal Processing
and Beyond, 19th International Conference on Image Analysis and Processing
(ICIAP), September 201
Assignment of the NV0 575 nm zero-phonon line in diamond to a 2E-2A2 transition
The time-averaged emission spectrum of single nitrogen-vacancy defects in
diamond gives zero-phonon lines of both the negative charge state at 637 nm
(1.945 eV) and the neutral charge state at 575 nm (2.156 eV). This occurs
through photo-conversion between the two charge states. Due to strain in the
diamond the zero-phonon lines are split and it is found that the splitting and
polarization of the two zero-phonon lines are the same. From this observation
and consideration of the electronic structure of the nitrogen-vacancy center it
is concluded that the excited state of the neutral center has A2 orbital
symmetry. The assignment of the 575 nm transition to a 2E - 2A2 transition has
not been established previously.Comment: 5 pages, 5 figure
Quantum feedback control of a solid-state qubit
We have studied theoretically the basic operation of a quantum feedback loop
designed to maintain a desired phase of quantum coherent oscillations in a
single solid-state qubit. The degree of oscillations synchronization with
external harmonic signal is calculated as a function of feedback strength,
taking into account available bandwidth and coupling to environment.
The feedback can efficiently suppress the dephasing of oscillations if the
qubit coupling to the detector is stronger than coupling to environment.Comment: Extended version of cond-mat/0107280 (5 pages, 5 figures); to be
published in PRB (RC
Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena
This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place
- …
