159 research outputs found

    Tumor Response to Combination Celecoxib and Erlotinib Therapy in Non-small Cell Lung Cancer Is Associated with a Low Baseline Matrix Metalloproteinase-9 and a Decline in Serum-Soluble E-Cadherin

    Get PDF
    IntroductionCyclooxygenase-2 overexpression may mediate resistance to epidermal growth factor receptor tyrosine kinase inhibition through prostaglandin E2-dependent promotion of epithelial to mesenchymal transition (EMT). Suppression of epithelial markers, such as E-cadherin, can lead to resistance to erlotinib. Prostaglandin E2 down-regulates E-cadherin expression by up-regulating transcriptional repressors, including ZEB1 and Snail. Furthermore, E-cadherin can be modulated by matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), promoting tumor invasion and metastasis. Markers of EMT and tumor invasion were evaluated in patient serum from a phase I clinical trial investigating the combination of celecoxib and erlotinib in non-small cell lung cancer (NSCLC) patients.MethodsSamples from 22 subjects were evaluated. Soluble E-cadherin (sEC) was evaluated by enzyme linked immunosorbent assay in patient serum at baseline, week 4, and week 8 of treatment. Other markers of EMT and angiogenesis were evaluated by enzyme linked immunosorbent assay, including MMP-9, TIMP-1, and CCL15.ResultsSerum sEC, MMP-9, TIMP-1, and CCL15 levels were determined at baseline and week 8. Patients with a partial response to therapy had a significant decrease in sEC, TIMP-1, and CCL15 at week 8. In patients who responded to the combination therapy, baseline MMP-9 was significantly lower compared with nonresponders (p = 0.006).ConclusionssEC, MMP-9, TIMP-1, and CCL15 levels correlate with response to combination therapy with erlotinib and celecoxib in patients with NSCLC. A randomized phase II trial is planned comparing erlotinib and celecoxib with erlotinib plus placebo in advanced NSCLC. This study will prospectively assess these and other biomarkers in serum and tumor tissue

    A Simple & Convenient Solid Phase Synthesis of Bacterial Origin Octapeptide Sequence, Glu-Asp-Gly-Asn-Lys-Pro-Gly-Lys-OH

    Get PDF
    The repeating octapeptide sequence, Glu-Asp-Gly-Asn-Lys-Pro-Gly-Lys-OH derived from the glycoprotein found in Staphylococcus aureus cell wall is assembled by simple solid phase peptide synthesis methodology using a base labile linker

    Tono-Pen XL tonometry during application of a suction ring in rabbits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to evaluate the use of Tono-Pen XL in measuring IOP during the application of a suction ring in rabbit eyes with manometrically controlled IOP.</p> <p>Methods</p> <p>Tono-Pen XL was calibrated against direct manometry in 10 rabbit eyes. A suction ring was then applied in 4 rabbit eyes and the IOP was determined manometrically during suction ring application at 350 mmHg vacuum pressure. Finally, in 6 catheterized rabbit eyes the IOP was measured with Tono-Pen XL during suction ring application at suction vacuum from 350 to 650 mmHg, while keeping actual IOP stable at 30 mmHg and 60 mmHg.</p> <p>Results</p> <p>Linear regression analysis revealed that the Tono-pen XL was reliable for IOPs between 10 and 70 mmHg (R<sup>2 </sup>= 0.9855). Direct manometry during suction ring application showed no statistically significant variation of Tono-Pen XL readings when the incanulation manometry intraocular pressure changed from 30 mmHg to 60 mmHg and no statistically significant correlation between suction vacuum and IOP measurements.</p> <p>Conclusion</p> <p>Tono-Pen XL measurements are unreliable during the application of a suction ring on living rabbit eyes even when the actual IOP is forced to be within the validated range of Tono-Pen XL measurements. This inaccuracy is probably related to altered corneal and scleral geometry and stress.</p

    Grape Seed Proanthocyanidins Inhibit Melanoma Cell Invasiveness by Reduction of PGE2 Synthesis and Reversal of Epithelial-to-Mesenchymal Transition

    Get PDF
    Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of grape seed proanthocyanidins (GSPs) on melanoma cancer cell migration and the molecular mechanisms underlying these effects using highly metastasis-specific human melanoma cell lines, A375 and Hs294t. Using in vitro cell invasion assays, we observed that treatment of A375 and Hs294t cells with GSPs resulted in a concentration-dependent inhibition of invasion or cell migration of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2 expression and prostaglandin (PG) E2 production. Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of melanoma cells with COX-2 small interfering RNA, also inhibited melanoma cell migration. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate, an inducer of COX-2, enhanced the phosphorylation of ERK1/2, a protein of mitogen-activated protein kinase family, and subsequently cell migration whereas both GSPs and celecoxib significantly inhibited 12-O-tetradecanoylphorbol-13-acetate -promoted cell migration as well as phosphorylation of ERK1/2. Treatment of cells with UO126, an inhibitor of MEK, also inhibited the migration of melanoma cells. Further, GSPs inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Additionally, inhibition of melanoma cell migration by GSPs was associated with reversal of epithelial-mesenchymal transition process, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin and cytokeratins) while loss of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in melanoma cells. Together, these results indicate that GSPs have the ability to inhibit melanoma cell invasion/migration by targeting the endogenous expression of COX-2 and reversing the process of epithelial-to-mesenchymal transition

    Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression

    Get PDF
    BACKGROUND: Cyclooxygenase (COX) is the rate-limiting enzyme that catalyzes the formation of prostaglandins. The inducible isoform of COX (COX-2) is highly expressed in aggressive metastatic breast cancers and may play a critical role in cancer progression (i.e. growth and metastasis). However, the exact mechanism(s) for COX-2-enhanced metastasis has yet to be clearly defined. It is well established that one of the direct results of COX-2 action is increased prostaglandin production, especially prostaglandin E(2 )(PGE(2)). Here, we correlate the inhibition of COX-2 activity with decreased breast cancer cell proliferation, migration, invasion and matrix metalloproteinase (MMP) expression. METHODS: Breast cancer cells (Hs578T, MDA-MB-231 and MCF-7) were treated with selective COX-2 inhibitors (NS-398 and Niflumic acid, NA). Cell proliferation was measured by staining with erythrosin B and counting the viable cells using a hemacytometer. Cell migration and invasion were measured using migration and invasion chamber systems. MMP expression was determined by enzyme immunoassay (secreted protein) and real-time quantitative polymerase chain reaction (mRNA). RESULTS: Our results show that there is a decline in proliferation, migration and invasion by the Hs578T and MDA-MB-231 breast cancer cell lines in the presence of either low concentrations (1 μM or lower) NA or NS-398. We also report that MMP mRNA and protein expression by Hs578T cells is inhibited by NS-398; there was a 50% decrease by 100 μM NS-398. PGE(2 )completely reversed the inhibitory effect of NS-398 on MMP mRNA expression. CONCLUSION: Our data suggests that COX-2-dependent activity is a necessary component for cellular and molecular mechanisms of breast cancer cell motility and invasion. COX-2 activity also modulates the expression of MMPs, which may be a part of the molecular mechanism by which COX-2 promotes cell invasion and migration. The studies suggest that COX-2 assists in determining and defining the metastatic signaling pathways that promote the breast cancer progression to metastasis

    Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo.

    Get PDF
    A recent genome-wide association study identified the gene encoding lemur tyrosine kinase-2 (LMTK2) as a susceptibility gene for prostate cancer. The identified genetic alteration is within intron 9, but the mechanisms by which LMTK2 may impact upon prostate cancer are not clear because the functions of LMTK2 are poorly understood. Here, we show that LMTK2 regulates a known pathway that controls phosphorylation of kinesin-1 light chain-2 (KLC2) by glycogen synthase kinase-3β (GSK3β). KLC2 phosphorylation by GSK3β induces the release of cargo from KLC2. LMTK2 signals via protein phosphatase-1C (PP1C) to increase inhibitory phosphorylation of GSK3β on serine-9 that reduces KLC2 phosphorylation and promotes binding of the known KLC2 cargo Smad2. Smad2 signals to the nucleus in response to transforming growth factor-β (TGFβ) receptor stimulation and transport of Smad2 by kinesin-1 is required for this signalling. We show that small interfering RNA loss of LMTK2 not only reduces binding of Smad2 to KLC2, but also inhibits TGFβ-induced Smad2 signalling. Thus, LMTK2 may regulate the activity of kinesin-1 motor function and Smad2 signalling

    The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    Get PDF
    BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

    MicroRNAs and their target gene networks in breast cancer

    Get PDF
    MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that post-transcriptionally inhibit gene expression. Many miRNAs have been implicated in several human cancers, including breast cancer. Here we describe the association between altered miRNA signatures and breast cancer tumorigenesis and metastasis. The loss of several tumor suppressor miRNAs (miR-206, miR-17-5p, miR-125a, miR-125b, miR-200, let-7, miR-34 and miR-31) and the overexpression of certain oncogenic miRNAs (miR-21, miR-155, miR-10b, miR-373 and miR-520c) have been observed in many breast cancers. The gene networks orchestrated by these miRNAs are still largely unknown, although key targets have been identified that may contribute to the disease phenotype. Here we report how the observed perturbations in miRNA expression profiles may lead to disruption of key pathways involved in breast cancer
    corecore