7 research outputs found

    Intestinal permeability and P-glycoprotein-mediated efflux transport of ticagrelor in Caco-2 monolayer cells

    No full text
    Ticagrelor is the unique reversible oral antiplatelet drug commercialized today. During this study, the intestinal permeability of ticagrelor and its potential P-glycoprotein (P-gp)-mediated active transport were assessed. To this end, bidirectional transport of ticagrelor was performed across Caco-2 (human epithelial colorectal adenocarcinoma) monolayer model in the presence and absence of potent P-gp inhibitor valspodar. Ticagrelor presented an apical-basolateral apparent permeability coefficient (Papp ) of 6.0 × 10(-6) cm/s. On the other hand, mean efflux ratio (ER) of 2.71 was observed for ticagrelor describing a higher efflux permeability compared to the influx component. Valspodar showed a significant inhibitory effect on the efflux of ticagrelor suggesting involvement of P-gp in its oral disposition. Co-incubation of the P-gp inhibitor decreased the efflux Papp of ticagrelor from 1.60 × 10(-5) to 1.13 × 10(-5) cm/s and decreased its ER by 70%. Results suggest a modest active transport of ticagrelor by P-gp across the Caco-2 cell monolayer. The co-administration of ticagrelor with a P-gp inhibitor seems altogether unlikely to have an extended impact on pharmacokinetics of ticagrelor and cause bleeding events in patients

    Development and validation of a chemical hydrolysis method for dextromethorphan and dextrophan determination in urine samples: application to the assessment of CYP2D6 activity in fibromyalgia patients

    No full text
    Dextromethorphan (DEM) is a widely used probe drug for human cytochrome P450 2D6 isozyme activity assessment by measuring the ratio between DEM and its N-demethylated metabolite dextrorphan (DOR). DOR is excreted in urine mainly conjugated to glucuronic acid. Prior to quantification, DOR must be deconjugated to avoid variability caused by the polymorphic glucuronosyltransferase enzyme. A chemical hydrolysis method was optimized using a chemometric approach. Three factors (acid concentration, hydrolysis time and temperature) were selected and simultaneously varied to study their effect on conjugated DOR hydrolysis. Hydrolysis conditions that maximize DOR release without significant degradation of both DEM and DOR were chosen and results were compared to those obtained by enzymatic method using beta-glucuronidase. An HPLC method with fluorescence detection was developed for the simultaneous quantitation of DEM, DOR and levallorphan, used as an internal standard. Separation was performed on a phenyl analytical column (150 mmx4.6 mm i.d., 5 microm) with a mobile phase consisting of 18% acetonitrile and 50 mM phosphoric acid (pH 3). The overall analytical procedure was validated and showed good performances in terms of selectivity, linearity, sensitivity, precision and accuracy. Finally, this assay was used to determine DEM/DOR molar ratios in fibromyalgia patients for the purpose of determining phenotype status for the CYP2D6

    Cytochrome P450 1A2 activity and incidence of thyroid disease and cancer after chronic or acute exposure to dioxins

    No full text
    Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) is the most toxic congener of a family of structurally and mechanistically related persistent organic pollutants whose effects are mediated through the aryl hydrocarbon receptor (AhR). Induction of CYP1A1/2 by TCDD through the AhR depends on the magnitude and the duration of exposure. We aimed to assess CYP1A2 activity after acute and chronic exposure to TCDD. The Maincy cohort is a sample population from Melun in the Val-de-Seine region in France that lived for at least 5 years close to a waste incinerator emitting polluted vapours (1974-2002) with high concentrations of dioxins (up to 2000 times the maximal recommended values). Acute exposure to TCDD (Viktor Yushchenko) has been described elsewhere by Sorg et al (Toxicol. Sci. 2012; 125:310-317). Both are rare cases of well-identified source of chronic and acute exposure to TCDD

    Therapeutic Drug Monitoring of Busulfan for the Management of Pediatric Patients: Cross-Validation of Methods and Long-Term Performance

    No full text
    Busulfan (Bu) is an alkylating agent used as part of the conditioning regimen in pediatric patients before hematopoietic stem cell transplantation. Despite intravenous (IV) administration and dosing recommendations based on age and weight, reports have revealed interindividual variability in Bu pharmacokinetics and the outcomes of hematopoietic stem cell transplantation. In this context, adjusting doses to Bu's narrow therapeutic window is advised. We aimed to assess the utility of therapeutic drug monitoring (TDM) of Bu in children, the reliability of Bu quantification methods, and its stability in plasma when stored for up to 5 years

    The Association of Combined GSTM1 and CYP2C9 Genotype Status with the Occurrence of Hemorrhagic Cystitis in Pediatric Patients Receiving Myeloablative Conditioning Regimen Prior to Allogeneic Hematopoietic Stem Cell Transplantation

    No full text
    Hemorrhagic cystitis (HC) is one of the complications of busulfan-cyclophosphamide (BU-CY) conditioning regimen during allogeneic hematopoietic stem cell transplantation (HSCT) in children. Identifying children at high risk of developing HC in a HSCT setting could facilitate the evaluation and implementation of effective prophylactic measures. In this retrospective analysis genotyping of selected candidate gene variants was performed in 72 children and plasma Sulfolane (Su, water soluble metabolite of BU) levels were measured in 39 children following treatment with BU-CY regimen. The cytotoxic effects of Su and acrolein (Ac, water soluble metabolite of CY) were tested on human urothelial cells (HUCs). The effect of Su was also tested on cytochrome P 450 (CYP) function in HepaRG hepatic cells. Cumulative incidences of HC before day 30 post HSCT were estimated using Kaplan-Meier curves and log-rank test was used to compare the difference between groups in a univariate analysis. Multivariate Cox regression was used to estimate hazard ratios with 95% confidence intervals (CIs). Multivariate analysis included co-variables that were significantly associated with HC in a univariate analysis. Cumulative incidence of HC was 15.3%. In the univariate analysis, HC incidence was significantly (p 40 vs. <11%) or in carriers of both functional GSTM1 and CYP2C9 (33.3 vs. 6.3%) compared to the other group. In a multivariate analysis, combined GSTM1 and CYP2C9 genotype status was associated with HC occurrence with a hazards ratio of 4.8 (95% CI: 1.3-18.4; p = 0.02). Ac was found to be toxic to HUC cells at lower concentrations (33 μM), Su was not toxic to HUC cells at concentrations below 1 mM and did not affect CYP function in HepaRG cells. Our observations suggest that pre-emptive genotyping of CYP2C9 and GSTM1 may aid in selection of more effective prophylaxis to reduce HC development in pediatric patients undergoing allogeneic HSCT. Article summary: (1) Children carrying functional alleles in GSTM1 and CYP2C9 are at high risk for developing hemorrhagic cystitis following treatment with busulfan and cyclophosphamide based conditioning regimen. (2) Identification of children at high risk for developing hemorrhagic cystitis in an allogeneic HSCT setting will enable us to evaluate and implement optimal strategies for its prevention. Trial registration: This study is a part of the trail "clinicaltrials.gov identifier: NCT01257854.
    corecore