21 research outputs found

    Low-lying excitations around a single vortex in a d-wave superconductor

    Full text link
    A full quantum-mechanical treatment of the Bogoliubov-de Gennes equation for a single vortex in a d-wave superconductor is presented. First, we find low-energy states extended in four diagonal directions, which have no counterpart in a vortex of s-wave superconductors. The four-fold symmetry is due to 'quantum effect', which is enhanced when pFΟp_{F}\xi is small. Second, for pFΟ∌1p_{F}\xi \sim 1, a peak with a large energy gap E0∌ΔE_{0}\sim \Delta is found in the density of states, which is due to the formation of the lowest bound states.Comment: 7pages, Revte

    Steps in the Negative-Differential-Conductivity Regime of a Superconductor

    Full text link
    Current-voltage characteristics were measured in the mixed state of Y1Ba2Cu3O(7-delta) superconducting films in the regime where flux flow becomes unstable and the differential conductivity dj/dE becomes negative. Under conditions where its negative slope is steep, the j(E) curve develops a pronounced staircase like pattern. We attribute the steps in j(E) to the formation of a dynamical phase consisting of the succesive nucleation of quantized distortions in the local vortex velocity and flux distribution within the moving flux matter.Comment: 5 pages, 3 figure

    Thermal Conductivity of the Spin Peierls Compound CuGeO_3

    Full text link
    The thermal conductivity of the Spin-Peierls (SP) compound CuGeO_3 was measured in magnetic fields up to 16 T. Above the SP transition, the heat transport due to spin excitations causes a peak at around 22 K, while below the transition the spin excitations rapidly diminish and the heat transport is dominated by phonons; however, the main scattering process of the phonons is with spin excitations, which demonstrates itself in an unusual peak in the thermal conductivity at about 5.5 K. This low-temperature peak is strongly suppressed with magnetic fields in excess of 12.5 T.Comment: 6 pages, including 2 postscript figure

    Specific Heat of Zn-Doped YBa_{2}Cu_3O_{6.95}: Possible Evidence for Kondo Screening in the Superconducting State

    Full text link
    The magnetic field dependence of the specific heat of Zn-doped single crystals of YBa_{2}Cu_3O_{6.95} was measured between 2 and 10 K and up to 8 Tesla. Doping levels of 0, 0.15%, 0.31%, and 1% were studied and compared. In particular we searched for the Schottky anomaly associated with the Zn-induced magnetic moments.Comment: 5 pages, 6 figure

    Normal-superconducting transition induced by high current densities in YBa2Cu3O7-d melt-textured samples and thin films: Similarities and differences

    Full text link
    Current-voltage characteristics of top seeded melt-textured YBa2Cu3O7-d are presented. The samples were cut out of centimetric monoliths. Films characteristics were also measured on microbridges patterned on thin films grown by dc sputtering. For both types of samples, a quasi-discontinuity or quenching was observed for a current density J* several times the critical current density Jc. Though films and bulks much differ in their magnitude of both Jc and J*, a proposal is made as to a common intrinsic origin of the quenching phenomenon. The unique temperature dependence observed for the ratio J*/Jc, as well as the explanation of the pre-quenching regime in terms of a single dissipation model lend support to our proposal.Comment: 10 pages, 10 figures, submitted to Physical Review

    Non-equilibrium Superconductivity and Quasiparticle Dynamics studied by Photo Induced Activation of Mm-Wave Absorption (PIAMA)

    Get PDF
    We present a study of non-equilibrium superconductivity in DyBa2Cu3O7-d using photo induced activation of mm-wave absorption (PIAMA). We monitor the time evolution of the thin film transmissivity at 5 cm-1 subject to pulsed infrared radiation. In addition to a positive bolometric signal we observe a second, faster, decay with a sign opposite to the bolometric signal for T>40 K. We attribute this to the unusual properties of quasi-particles residing near the nodes of an unconventional superconductor, resulting in a strong enhancement of the recombination time.Comment: 4 pages, REVTeX, Submitted to Phys. Rev. Letter

    Free flux flow resistivity in strongly overdoped high-T_c cuprate; purely viscous motion of the vortices in semiclassical d-wave superconductor

    Full text link
    We report the free flux flow (FFF) resistivity associated with a purely viscous motion of the vortices in moderately clean d-wave superconductor Bi:2201 in the strongly overdoped regime (T_c=16K) for a wide range of the magnetic field in the vortex state. The FFF resistivity is obtained by measuring the microwave surface impedance at different microwave frequencies. It is found that the FFF resistivity is remarkably different from that of conventional s-wave superconductors. At low fields (H<0.2H_c2) the FFF resistivity increases linearly with H with a coefficient which is far larger than that found in conventional s-wave superconductors. At higher fields, the FFF resistivity increases in proportion to \sqrt H up to H_c2. Based on these results, the energy dissipation mechanism associated with the viscous vortex motion in "semiclassical" d-wave superconductors with gap nodes is discussed. Two possible scenarios are put forth for these field dependence; the enhancement of the quasiparticle relaxation rate and the reduction of the number of the quasiparticles participating the energy dissipation in d-wave vortex state.Comment: 9 pages 7 figures, to appear in Phys. Rev.

    Impurity Effect on Kramer-Pesch Core Shrinkage in s-Wave Vortex and Chiral p-Wave Vortex

    Full text link
    The low-temperature shrinking of the vortex core (Kramer-Pesch effect) is studied for an isolated single vortex for chiral p-wave and s-wave superconducting phases. The effect of nonmagnetic impurities on the vortex core radius is numerically investigated in the Born limit by means of a quasiclassical approach. It is shown that in the chiral p-wave phase the Kramer-Pesch effect displays a certain robustness against impurities owing to a specific quantum effect, while the s-wave phase reacts more sensitively to impurity scattering. This suggests chiral p-wave superconductors as promising candidates for the experimental observation of the Kramer-Pesch effect.Comment: 18 pages, 4 figures; to be published in J. Low Temp. Phys.; Proc. of NATO ARW: VORTEX 2004, Yalta (Uknaine

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file
    corecore