14 research outputs found

    Energy and target material dependence of the neutron yield induced by proton and deuteron bombardment

    Get PDF
    The neutron yield for compact accelerator driven neutron sources depends on the target material, the ion type and its energy. When such sources are operated with low energy proton beams below 30 MeV, typical target materials are lithium and beryllium. New developments indicate that higher energies or a deuteron beam might be useful to increase the neutron yield at constant accelerator power. Here we present the total neutron yield analytically calculated for protons and deuterons at energies up to 100 MeV for various target materials. The total neutron yield depends on the involved cross sections and the stopping power of the target material. This study shows that for energies lower than 30 MeV light target materials with a deuteron beam are preferable whereas for energies above 30 MeV heavy target materials show a high neutron yield with little difference for a proton or deuteron beam

    Energy and target material dependence of the neutron yield induced by proton and deuteron bombardment

    No full text
    The neutron yield for compact accelerator driven neutron sources depends on the target material, the ion type and its energy. When such sources are operated with low energy proton beams below 30 MeV, typical target materials are lithium and beryllium. New developments indicate that higher energies or a deuteron beam might be useful to increase the neutron yield at constant accelerator power. Here we present the total neutron yield analytically calculated for protons and deuterons at energies up to 100 MeV for various target materials. The total neutron yield depends on the involved cross sections and the stopping power of the target material. This study shows that for energies lower than 30 MeV light target materials with a deuteron beam are preferable whereas for energies above 30 MeV heavy target materials show a high neutron yield with little difference for a proton or deuteron beam

    Energy and target material dependence of the neutron yield induced by proton and deuteron bombardment

    No full text
    The neutron yield for compact accelerator driven neutron sources depends on the target material, the ion type and its energy. When such sources are operated with low energy proton beams below 30 MeV, typical target materials are lithium and beryllium. New developments indicate that higher energies or a deuteron beam might be useful to increase the neutron yield at constant accelerator power. Here we present the total neutron yield analytically calculated for protons and deuterons at energies up to 100 MeV for various target materials. The total neutron yield depends on the involved cross sections and the stopping power of the target material. This study shows that for energies lower than 30 MeV light target materials with a deuteron beam are preferable whereas for energies above 30 MeV heavy target materials show a high neutron yield with little difference for a proton or deuteron beam

    Parametric study and design improvements for the target of NOVA ERA

    No full text
    The results of a parametric study are presented which was conducted in the framework of the High Brilliance Neutron Source Project (HBS), in order to optimise the target dimensions for a Compact Accelerator driven Neutron Source (CANS). A thin disc shaped target cooled by a water jet was taken as design reference, which was recently published in the Conceptual Design Report for NOVA ERA (Neutrons Obtained Via Accelerator for Education and Research Activities).For a given target thickness, limited by the ion range in the target material, the cooling fluid pressure and the heat deposition of the ion beam, an optimal diameter of the target disc can be found, for which the occurring stresses are minimised. With the accelerator parameters of NOVA ERA (10 MeV protons with an average power of 400 W on the Target) and with the results of the parametric study, it was possible to design a target, where the occurring stresses are by a factor 3 smaller than the yield strength of the employed beryllium alloy, S-65C VHP

    The Jülich high brilliance neutron source project - Improving access to neutrons

    No full text
    1.5Full digital generat a partir de la base topogràfica 1:5 000. Els fulls d'aquesta sèrie corresponen a la divisió 4 x 4 de la malla de distribució del Mapa topográfico nacional de España 1:50 000. Cada full inclou 2 finestres (Mapa índex de la sèrie; Mapa guia). - Projecció Universal Transversa Mercator (UTM), fus 31, sobre el·lipsoide internacional i datum europeu. Equidistància de les corbes de nivell: 5 m.Imatge digital de 90 x 67 cm1:5 000300 PP
    corecore