2,402 research outputs found

    NASA/General Electric broad-specification fuels combustion technology program, phase 1

    Get PDF
    The use of broad specification fuels in aircraft turbine engine combustion systems was examined. Three different combustor design concepts were evaluated for their ability to use broad specification fuels while meeting several specific emissions, performance, and durability goals. These combustor concepts covered a range from those having limited complexity and relatively low technical risk to those having high potential for achieving all of the program goals at the expense of increased technical risk

    Advanced low emissions catalytic combustor program at General Electric

    Get PDF
    The Advanced Low Emissions Catalytic Combustors Program (ALECC) is being undertaken to evaluate the feasibility of employing catalytic combustion technology in aircraft gas turbine engines as a means to control emission of oxides of nitrogen during subsonic stratospheric cruise operation. The ALECC Program is being conducted in three phases. The first phase, which was completed in November, 1978, consisted of a design study to identify catalytic combustor designs having the greatest potential to meet the emissions and performance goals specified. The primary emissions goal of this program was to obtain cruise NO emissions of less than 1g/kg (compared with levels of 15 to 20 g/x obtained with current designs)/ However, good overall performance and feasibility for engine development were heavily weighted in the evaluation of combustor designs

    Combustor concepts for aircraft gas turbine low-power emissions reduction

    Get PDF
    Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved

    Experimental evaluation of combustor concepts for burning broad property fuels

    Get PDF
    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied

    Advanced catalytic combustors for low pollutant emissions, phase 1

    Get PDF
    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors

    Douglas-fir beetle lipid levels in relation to tree physical characteristics

    Get PDF
    The relationship of Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, brood adult lipid levels and position of development along infested tree boles was investigated. In addition, the effects of phloem and bark thickness on brood adult lipid levels were also tested. There were no significant differences (P > 0.05) in brood adult lipid levels in relation to bole position, phloem thickness, or bark thickness found in this study. Numbers of attacks, larval mines, brood adults, and parasitoid cocoons did not differ significantly by tree bole position. Results from this study suggest Douglas-fir beetle does not benefit, in the form of increased lipid levels, from oviposition at different bole positions

    Broad specification fuels combustion technology program

    Get PDF
    Design and development efforts to evolve promising aircraft gas turbine combustor configurations for burning broadened-properties fuels were discussed. Design and experimental evaluations of three different combustor concepts in sector combustor rig tests was conducted. The combustor concepts were a state of the art single-annular combustor, a staged double-annular combustor, and a short single-annular combustor with variable geometry to control primary zone stoichiometry. A total of 25 different configurations of the three combustor concepts were evaluated. Testing was conducted over the full range of CF6-80A engine combustor inlet conditions, using four fuels containing between 12% and 14% hydrogen by weight. Good progress was made toward meeting specific program emissions and performance goals with each of the three combustor concepts. The effects of reduced fuel hydrogen content, including increased flame radiation, liner metal temperature, smoke, and NOx emissions were documented. The most significant effect on the baseline combustor was a projected 33% life reduction, for a reduction from 14% to 13% fuel hydrogen content, due to increased liner temperatures

    P5_2 Spaghettification: Surviving a Black Hole Event Horizon

    Get PDF
    We found that it is possible to stay conscious falling through the event horizon of aBlack Hole if the mass exceeds 19,000M_sol. This assumes the average person is ofgood health and can stay conscious with a relative force less than 5 g acting upon them
    corecore