58 research outputs found
Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis
Previous studies have evaluated how changes in atmospheric nitrogen (N) inputs and climate affect stream N concentrations and fluxes, but none have synthesized data from sites around the globe. We identified variables controlling stream inorganic N concentrations and fluxes, and how they have changed, by synthesizing 20 time series ranging from 5 to 51 years of data collected from forest and grassland dominated watersheds across Europe, North America, and East Asia and across four climate types (tropical, temperate, Mediterranean, and boreal) using the International Long-Term Ecological Research Network. We hypothesized that sites with greater atmospheric N deposition have greater stream N export rates, but that climate has taken a stronger role as atmospheric deposition declines in many regions of the globe. We found declining trends in bulk ammonium and nitrate deposition, especially in the longest time-series, with ammonium contributing relatively more to atmospheric N deposition over time. Among sites, there were statistically significant positive relationships between (1) annual rates of precipitation and stream ammonium and nitrate fluxes and (2) annual rates of atmospheric N inputs and stream nitrate concentrations and fluxes. There were no significant relationships between air temperature and stream N export. Our long-term data shows that although N deposition is declining over time, atmospheric N inputs and precipitation remain important predictors for inorganic N exported from forested and grassland watersheds. Overall, we also demonstrate that long-term monitoring provides understanding of ecosystems and biogeochemical cycling that would not be possible with short-term studies alone.publishedVersio
Lead mining in the Derwent Valley Covering the mining districts of Blanchland, Ramshaw, Townfield, Edmundbyers and Healeyfield
Includes bibliographical referencesSIGLEAvailable from British Library Document Supply Centre- DSC:2330. 540(70) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Removal of multiple nitrogenous wastes by Aspergillus niger in a continuous fixed-slab reactor
A biofilter reactor, to which is attached a large variety of microorganisms, can be employed to treat circulating water in an intensive aquaculture system. Some nitrogen-containing wastes, such as ammonium and nitrite, are toxic to the aquatic organisms. The removal rates of the nitrogenous wastes are regarded as indices for the efficiency of treatment by biofilters. In this study, a fungus that was characterized as being able to remediate multiple nitrogenous wastes was identified as Aspergillus niger NBG5. In a continuous fixed-slab reactor, the heterotrophic fungus utilized ammonium, nitrite, protein, and glucose simultaneously. The fungus assimilated ammonium, nitrite and protein at rates of 0.247, 0.07 and 0.096 g-N/g-cell/day, respectively, at 22 degreesC. The remediation rates of ammonium nitrogenous wastes decreased by a factor of eight at 35 degreesC, while the specific growth rates slightly increased. For nitrogenous wastes, ammonium was a preferred substrate but its rate of consumption declined significantly as temperature increased. The nitrogen consumption rates were inconsistent with the cell yields at high temperature. Further analysis of consumption ratios of C/N revealed that cells grew predominantly from the carbon at high temperature. The A. niger NBG5 consumed glucose rapidly at specific rates of 2-2.5 g-C/g-cell/day at 35 degreesC in the presence of ammonium and nitrite; while sluggish consumption of glucose was observed in the protein substrate. The protein could serve as an alternative carbon source. Further ANOVA statistical analysis with P < 0.05 revealed no significant effects of temperature on the specific growth rates of A. niger on the SG-NH4 and milk-protein substrates, whereas significant effects on the ON ratio at culture temperatures higher than 25 degreesC were observed. These findings indicated that the carbon utilization rate increased with high temperature, whereas nitrogen utilization increased as temperature declined. A suitable operational temperature was suggested, depending upon the amount of waste contents of C/N. A high temperature stimulates the use of carbon waste, while a low temperature favors remediation of all nitrogenous wastes. (C) 2003 Elsevier Ltd. All rights reserved
- âŠ