5,911 research outputs found

    Erosion Control in Ohio Farming

    Get PDF
    PDF pages: 4

    Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions

    Full text link
    We present a study of the effects of temperature upon the excitation frequencies of a Bose-Einstein condensate formed within a dilute gas with a weak attractive effective interaction between the atoms. We use the self-consistent Hartree-Fock Bogoliubov treatment within the Popov approximation and compare our results to previous zero temperature and Hartree-Fock calculations The metastability of the condensate is monitored by means of the l=0l=0 excitation frequency. As the number of atoms in the condensate is increased, with TT held constant, this frequency goes to zero, signalling a phase transition to a dense collapsed state. The critical number for collapse is found to decrease as a function of temperature, the rate of decrease being greater than that obtained in previous Hartree-Fock calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.

    Vortices in attractive Bose-Einstein condensates in two dimensions

    Full text link
    The form and stability of quantum vortices in Bose-Einstein condensates with attractive atomic interactions is elucidated. They appear as ring bright solitons, and are a generalization of the Townes soliton to nonzero winding number mm. An infinite sequence of radially excited stationary states appear for each value of mm, which are characterized by concentric matter-wave rings separated by nodes, in contrast to repulsive condensates, where no such set of states exists. It is shown that robustly stable as well as unstable regimes may be achieved in confined geometries, thereby suggesting that vortices and their radial excited states can be observed in experiments on attractive condensates in two dimensions.Comment: 4 pages, 3 figure

    Gapless finite-TT theory of collective modes of a trapped gas

    Full text link
    We present predictions for the frequencies of collective modes of trapped Bose-condensed 87^{87}Rb atoms at finite temperature. Our treatment includes a self-consistent treatment of the mean-field from finite-TT excitations and the anomolous average. This is the first gapless calculation of this type for a trapped Bose-Einstein condensed gas. The corrections quantitatively account for the downward shift in the m=2m=2 excitation frequencies observed in recent experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure

    A Pulsed Eddy Current Method for Examining Thin-Walled Stainless Steel Tubing

    Get PDF
    A bellows is fabricated from a 12-in. section of type 321 or type 216 stainless steel tubing. In order to ensure that the bellows will survive the rigors of the production environment, it is essential that the tubing be free of all “scratch like” defects. A feasibility study was conducted to determine if an eddy current method could be developed to nondestructively examine this tubing

    Slow 4He^{4}He Quenches Produce Fuzzy, Transient Vortices

    Full text link
    We examine the Zurek scenario for the production of vortices in quenches of liquid 4He^{4}He in the light of recent experiments. Extending our previous results to later times, we argue that short wavelength thermal fluctuations make vortices poorly defined until after the transition has occurred. Further, if and when vortices appear, it is plausible that that they will decay faster than anticipated from turbulence experiments, irrespective of quench rates.Comment: 4 pages, Revtex file, no figures Apart from a more appropriate title, this paper differs from its predecessor by including temperature, as well as pressure, quenche

    Nucleon mass and pion loops: Renormalization

    Get PDF
    Using Dyson--Schwinger equations, the nucleon propagator is analyzed nonperturbatively in a field--theoretical model for the pion--nucleon interaction. Infinities are circumvented by using pion--nucleon form factors which define the physical scale. It is shown that the correct, finite, on--shell nucleon renormalization is important for the value of the mass--shift and the propagator. For physically acceptable forms of the pion--nucleon form factor the rainbow approximation together with renormalization is inconsistent. Going beyond the rainbow approximation, the full pion--nucleon vertex is modelled by its bare part plus a one--loop correction including an effective Δ\Delta. It is found that a consistent value for the nucleon mass--shift can be obtained as a consequence of a subtle interplay between wave function and vertex renormalization. Furthermore, the bare and renormalized pion--nucleon coupling constant are approximately equal, consistent with results from the Cloudy Bag Model.Comment: 14 pages, 6 figure

    An analytical study of resonant transport of Bose-Einstein condensates

    Full text link
    We study the stationary nonlinear Schr\"odinger equation, or Gross-Pitaevskii equation, for a one--dimensional finite square well potential. By neglecting the mean--field interaction outside the potential well it is possible to discuss the transport properties of the system analytically in terms of ingoing and outgoing waves. Resonances and bound states are obtained analytically. The transmitted flux shows a bistable behaviour. Novel crossing scenarios of eigenstates similar to beak--to--beak structures are observed for a repulsive mean-field interaction. It is proven that resonances transform to bound states due to an attractive nonlinearity and vice versa for a repulsive nonlinearity, and the critical nonlinearity for the transformation is calculated analytically. The bound state wavefunctions of the system satisfy an oscillation theorem as in the case of linear quantum mechanics. Furthermore, the implications of the eigenstates on the dymamics of the system are discussed.Comment: RevTeX4, 16 pages, 19 figure

    Vortices and Ring Solitons in Bose-Einstein Condensates

    Full text link
    The form and stability properties of axisymmetric and spherically symmetric stationary states in two and three dimensions, respectively, are elucidated for Bose-Einstein condensates. These states include the ground state, central vortices, and radial excitations of both. The latter are called ring solitons in two dimensions and spherical shells in three. The nonlinear Schrodinger equation is taken as the fundamental model; both extended and harmonically trapped condensates are considered. It is found that the presence of a vortex stabilizes ring solitons in a harmonic trap, in contrast to the well known instability of such solutions in the optics context. This is the first known example of a dark soliton in the cubic nonlinear Schrodinger equation which is stable in a number of dimensions greater than one.Comment: 15 pages, 9 figures -- final versio
    • …
    corecore