3 research outputs found

    Interconnections accelerate collapse in a socio-ecological metapopulation

    Get PDF
    Resource over-exploitation can have profound effects on both ecosystems and the human populations residing in them. Models of population growth based on a depletable resources have been studied previously, but relatively few consider metapopulation effects. Here we analyze a socio-ecological metapopulation model where resources grow logistically on each patch. Each population harvests resources on its own patch to support population growth, but can also harvest resources from other patches when their own patch resources become scarce. We find that allowing populations to harvest from other patches significantly accelerates collapse and also increases the parameter regime for which collapse occurs, compared to a model where populations are not able to harvest resources from other patches. As the number of patches in the metapopulation increases, collapse is more sudden, more severe, and occurs sooner. These effects also persist under scenarios of asymmetry and inequality between patches. We conclude that metapopulation effects in socio-ecological systems can be both helpful and harmful and therefore require urgent study.NSERC Discovery Gran

    Interconnections Accelerate Collapse in a Socio-Ecological Metapopulation

    No full text
    Over-exploitation of natural resources can have profound effects on both ecosystems and their resident human populations. Simple theoretical models of the dynamics of a population of human harvesters and the abundance of a natural resource being harvested have been studied previously, but relatively few models consider the effect of metapopulation structure (i.e., a population distributed across discrete patches). Here we analyze a socio-ecological metapopulation model based on an existing single-population model used to study persistence and collapse in human populations. Resources grow logistically on each patch. Each population harvests resources on its own patch to support population growth, but can also harvest resources from other patches when their own patch resources become scarce. We show that when populations are allowed to harvest resources from other patches, the peak population size is higher, but subsequent population collapse is significantly accelerated and across a broader parameter regime. As the number of patches in the metapopulation increases, collapse is more sudden, more severe, and occurs sooner. These effects persist under scenarios of asymmetry and inequality between patches. Our model makes simplifying assumptions in order to facilitate insight and understanding of model dynamics. However, the robustness of the model prediction suggests that more sophisticated models should be developed to ascertain the impact of metapopulation structure on socio-ecological sustainability
    corecore