223 research outputs found

    The identification of markers of macrophage differentiation in PMA-stimulated THP-1 Cells and monocyte-derived macrophages

    Get PDF
    Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells

    Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines

    Get PDF
    SARS-CoV-2 vaccination significantly reduces morbidity and mortality, but has less impact on viral transmission rates, thus aiding viral evolution; and the longevity of vaccine-induced immunity rapidly declines. Immune responses in respiratory tract mucosal tissues are crucial for early control of infection, and can generate long-term antigen-specific protection with prompt recall responses. However, currently approved SARS-CoV-2 vaccines are not amenable to adequate respiratory mucosal delivery, particularly in the upper airways, which could account for the high vaccine breakthrough infection rates and limited duration of vaccine-mediated protection. In view of these drawbacks, we outline a strategy that has the potential to enhance both the efficacy and durability of existing SARS-CoV-2 vaccines, by inducing robust memory responses in the upper respiratory tract mucosa

    Does autonomous macrophage-driven inflammation promote alveolar damage in COVID-19?

    Get PDF
    SARS-CoV-2 has caused devastating effects with over 550 million infections by July 2022 and approximately 6.4 million deaths [1]. Societal and economic impacts will reverberate for years, with continuous evolution of SARS-CoV-2 as it persistently spreads through the human population as exemplified by reduced activity of vaccines and monoclonals against Omicron BA.4 or BA.5 subvariants [2]. A greater understanding of pathogenesis and more tailored therapeutic approaches are therefore essential

    Severe COVID-19 versus multisystem inflammatory syndrome:comparing two critical outcomes of SARS-CoV-2 infection

    Get PDF
    peer reviewedSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with diverse host response immunodynamics and variable inflammatory manifestations. Several immune-modulating risk factors can contribute to a more severe coronavirus disease 2019 (COVID-19) course with increased morbidity and mortality. The comparatively rare post-infectious multisystem inflammatory syndrome (MIS) can develop in formerly healthy individuals, with accelerated progression to life-threatening illness. A common trajectory of immune dysregulation forms a continuum of the COVID-19 spectrum and MIS; however, severity of COVID-19 or the development of MIS is dependent on distinct aetiological factors that produce variable host inflammatory responses to infection with different spatiotemporal manifestations, a comprehensive understanding of which is necessary to set better targeted therapeutic and preventative strategies for both

    Hypoxaemia prevalence and its adverse clinical outcomes among children hospitalised with WHO-defined severe pneumonia in Bangladesh

    Get PDF
    BACKGROUND: With an estimated 1 million cases per year, pneumonia accounts for 15% of all under-five deaths globally, and hypoxaemia is one of the strongest predictors of mortality. Most of these deaths are preventable and occur in low- and middle-income countries. Bangladesh is among the six high burden countries with an estimated 4 million pneumonia episodes annually. There is a gap in updated evidence on the prevalence of hypoxaemia among children with severe pneumonia in high burden countries, including Bangladesh. METHODS: We conducted a secondary analysis of data obtained from icddr,b-Dhaka Hospital, a secondary level referral hospital located in Dhaka, Bangladesh. We included 2646 children aged 2-59 months admitted with WHO-defined severe pneumonia during 2014-17. The primary outcome of interest was hypoxaemia, defined as SpO(2) < 90% on admission. The secondary outcome of interest was adverse clinical outcomes defined as deaths during hospital stay or referral to higher-level facilities due to clinical deterioration. RESULTS: On admission, the prevalence of hypoxaemia among children hospitalised with severe pneumonia was 40%. The odds of hypoxaemia were higher among females (adjusted Odds ratio AOR = 1.44; 95% confidence interval CI = 1.22-1.71) and those with a history of cough or difficulty in breathing for 0-48 hours before admission (AOR = 1.61; 95% CI = 1.28-2.02). Among all children with severe pneumonia, 6% died during the hospital stay, and 9% were referred to higher-level facilities due to clinical deterioration. Hypoxaemia was the strongest predictor of mortality (AOR = 11.08; 95% CI = 7.28-16.87) and referral (AOR = 5.94; 95% CI = 4.31-17) among other factors such as age, sex, history of fever and cough or difficulty in breathing, and severe acute malnutrition. Among those who survived, the median duration of hospital stay was 7 (IQR = 4-11) days in the hypoxaemic group and 6 (IQR = 4-9) days in the non-hypoxaemic group, and the difference was significant at P < 0.001. CONCLUSIONS: The high burden of hypoxaemia and its clinical outcomes call for urgent attention to promote oxygen security in low resource settings like Bangladesh. The availability of pulse oximetry for rapid identification and an effective oxygen delivery system for immediate correction should be ensured for averting many preventable deaths

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease
    • …
    corecore