12 research outputs found

    Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms

    Get PDF
    Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields

    Veronica plants-drifting from farm to traditional healing, food application, and phytopharmacology

    Get PDF
    The Veronica genus, with more than 200 species, belongs to the Plantaginaceae family and is distributed over most of the Northern Hemisphere and in many parts of Southern Hemisphere. These plants are traditionally used in medicine for wound healing, in the treatment of rheumatism, and in different human diseases. This paper reviews the chemical composition of some valuable Veronica species, the possibilities Veronica extracts have in food preservation and as food ingredients, and their functional properties. Veronica species represent a valuable source of biological active secondary metabolites, including iridoid glycosides and phenolic compounds. In particular, due to presence of these phytochemicals, Veronica species exhibit a wide spectrum of biological activities, including antimicrobial and antioxidant. In fact, some studies suggest that some Veronica extracts can inhibit foodborne pathogens, such as Listeria monocytogenes, but only a few of them were performed in food systems. Moreover, anticancer, anti-inflammatory, and other bioactivities were reported in vitro and in vivo. The bioactivity of Veronica plants was demonstrated, but further studies in food systems and in humans are required.M.d.M.C. is grateful for funding from the “Acción 6 del Plan de Apoyo a la Investigación de la Universidad de Jaén, 2017–2019”. N. Martins would like to thank the Portuguese Foundation for Science and Technology (FCT-Portugal) for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020 – Northern Regional Operational Program” (NORTE-01-0145-FEDER-000012)

    Bioactive Compounds as Potential Agents for Sexually Transmitted Diseases Management: A Review to Explore Molecular Mechanisms of Action

    Get PDF
    Sexually transmitted diseases (STDs) are produced by pathogens like bacteria, fungi, parasites, and viruses, and may generate severe health problems such as cancer, ulcers, and even problems in the newborn. This narrative review aims to present updated information about the use of natural bioactive compounds for the prevention and treatment of sexually transmitted infections. A search of the literature was performed using databases and search engines such as PubMed, Scopus, Google Scholar and Science Direct. From the pharmacotherapeutic management point of view, any strategies for prevention should contain medical approaches. The bioactive compounds obtained from natural products have shown biological effects against different microorganisms for the treatment of these diseases. The main results showed antimicrobial, antiprotozoal, antifungal and antiviral effects such as HIV. Also, the molecular mechanisms, signalling pathways and action targets of natural compounds were highlighted, thus justifying bacterial and antifungal inhibition, apoptosis or reduction of viral replication. From the data of our study, we can conclude that natural compounds may be a significant source for adjuvant drugs / complementary therapies in the treatment of STDs. With all these benefits, the future must conduct extensive clinical trials and the development of pharmaceutical nanotechnologies for a greater therapeutic effect.This work was supported by CONICYT PIA/APOYO CCTE AFB170007. The project is supported under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in 2019–2022 project number: 024/RID/2018/19 and by Medical University of Lublin, Poland, University Grant number: DS 07/2021. This study partially supported by Canakkale Onsekiz Mart University (Scientific Research Projects, ID: FYL-2017–1339 and FBA-2017–1268)

    Cucurbita plants: From farm to industry

    Get PDF
    The Cucurbita genus, a member of Cucurbitaceae family, also known as cucurbits, is native to the Americas. Genus members, like Cucurbita pepo and Cucurbita maxima, have been used for centuries in folk medicine for treating gastrointestinal diseases and intestinal parasites. These pharmacological effects are mainly attributed to their phytochemical composition. Indeed, Cucurbita species are a natural source of carotenoids, tocopherols, phenols, terpenoids, saponins, sterols, fatty acids, functional carbohydrates, and polysaccharides, that beyond exerting remarkable biological effects, have also been increasingly exploited for biotechnological applications. In this article, we specifically cover the habitat, cultivation, phytochemical composition, and food preservative abilities of Cucurbita plants.This work was supported by CONICYT PIA/APOYO CCTE AFB170007. N. Martins would like to thank the Portuguese Foundation for Science and Technology (FCT-Portugal) for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020-Northern Regional Operational Program” (NORTE-01-0145-FEDER-000012)

    Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits

    Full text link
    Genistein is an isoflavone first isolated from the brooming plant Dyer\u27s Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein"from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy
    corecore