2 research outputs found

    Arterioscler Thromb Vasc Biol

    No full text
    BACKGROUND: Antithrombin, PC (protein C), and PS (protein S) are circulating natural anticoagulant proteins that regulate hemostasis and of which partial deficiencies are causes of venous thromboembolism. Previous genetic association studies involving antithrombin, PC, and PS were limited by modest sample sizes or by being restricted to candidate genes. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, we meta-analyzed across ancestries the results from 10 genome-wide association studies of plasma levels of antithrombin, PC, PS free, and PS total. METHODS: Study participants were of European and African ancestries, and genotype data were imputed to TOPMed, a dense multiancestry reference panel. Each of the 10 studies conducted a genome-wide association studies for each phenotype and summary results were meta-analyzed, stratified by ancestry. Analysis of AT included 25 243 European ancestry and 2688 African ancestry participants, PC analysis included 16 597 European ancestry and 2688 African ancestry participants, PSF and PST analysis included 4113 and 6409 European ancestry participants. We also conducted transcriptome-wide association analyses and multiphenotype analysis to discover additional associations. Novel genome-wide association studies and transcriptome-wide association analyses findings were validated by in vitro functional experiments. Mendelian randomization was performed to assess the causal relationship between these proteins and cardiovascular outcomes. RESULTS: Genome-wide association studies meta-analyses identified 4 newly associated loci: 3 with antithrombin levels (GCKR, BAZ1B, and HP-TXNL4B) and 1 with PS levels (ORM1-ORM2). transcriptome-wide association analyses identified 3 newly associated genes: 1 with antithrombin level (FCGRT), 1 with PC (GOLM2), and 1 with PS (MYL7). In addition, we replicated 7 independent loci reported in previous studies. Functional experiments provided evidence for the involvement of GCKR, SNX17, and HP genes in antithrombin regulation. CONCLUSIONS: The use of larger sample sizes, diverse populations, and a denser imputation reference panel allowed the detection of 7 novel genomic loci associated with plasma antithrombin, PC, and PS levels

    DNA methylation analysis identifies novel genetic loci associated with circulating fibrinogen levels in blood

    No full text
    BACKGROUND: Fibrinogen plays an essential role in blood coagulation and inflammation. Circulating fibrinogen levels may be determined by inter-individual differences in DNA methylation at CpG sites, and vice versa. METHODS: We performed an epigenome-wide association study (EWAS) of circulating fibrinogen levels in 18,037 White, Black, American Indian, and Hispanic participants representing 14 studies from the CHARGE consortium. Circulating leukocyte DNA methylation was measured in 12,904 participants using the Illumina 450K array, and in 5,133 participants using the EPIC array. Each study performed an EWAS of fibrinogen using linear mixed models adjusted for potential confounders. Study-specific results were combined using array-specific meta-analysis, followed by cross-replication of epigenome-wide significant associations. We compared models with and without C-reactive protein (CRP) adjustment to examine the role of inflammation. RESULTS: We identified 208 and 87 significant CpG sites associated with fibrinogen from the 450K (p-value<1.03Ă—10(-7)) and EPIC arrays (p-value<5.78Ă—10(-8)), respectively. There were 78 associations from the 450K array that replicated in the EPIC array and 26 vice versa. After accounting for the overlapping sites, there were 83 replicated CpG sites located in 61 loci, of which only 4 have been previously reported for fibrinogen. Examples of genes located near these CpG sites were SOCS3 and AIM2, which are involved in inflammatory pathways. The associations for all 83 replicated CpG sites were attenuated after CRP adjustment, although many remained significant. CONCLUSION: We identified 83 CpG sites associated with circulating fibrinogen levels. These associations are partially driven by inflammatory pathways shared by both fibrinogen and CRP
    corecore