1,126 research outputs found
Curvature Correction in the Strutinsky's Method
Mass calculations carried out by Strutinsky's shell correction method are
based on the notion of smooth single particle level density. The smoothing
procedure is always performed using curvature correction. In the presence of
curvature correction a smooth function remains unchanged if smoothing is
applied. Two new curvature correction methods are introduced. The performance
of the standard and new methods are investigated using harmonic oscillator and
realistic potentials.Comment: 4 figures, submitted to Journal of Physics G: Nuclear and Particle
Physic
Fission barriers in actinides in covariant density functional theory: the role of triaxiality
Relativistic mean field theory allowing for triaxial deformations is applied
for a systematic study of fission barriers in the actinide region. Different
pairing schemes are studied in details and it is shown that covariant density
functional theory is able to describe fission barriers on a level of accuracy
comparable with non-relativistic calculations, even with the best
phenomenological macroscopic+microscopic approaches. Triaxiality in the region
of the first saddle plays a crucial role in achieving that.Comment: 11 pages, 13 figure
Fission barriers in covariant density functional theory: extrapolation to superheavy nuclei
Systematic calculations of fission barriers allowing for triaxial deformation
are performed for even-even superheavy nuclei with charge number
using three classes of covariant density functional models. The softness of
nuclei in the triaxial plane leads to an emergence of several competing fission
pathes in the region of the inner fission barrier in some of these nuclei. The
outer fission barriers are considerably affected by triaxiality and octupole
deformation. General trends of the evolution of the inner and the outer fission
barrier heights are discussed as a function of the particle numbers.Comment: 24 pages, 8 tables, 12 figure
Methods in Historical Ecology: A Case Study of Tintic Valley, Utah
Through use of repeat photography, archival research, and field observation to reconstruct landscape vegetation patterns and changes across a 120 year period in the upper Tintic Valley of central Utah, researchers found significant changes in landscape vegetation pattern over time, including change in pinyon-juniper woodland area. Previously reported massive woodland harvest associated with early mining, domestic and agricultural activities elsewhere in the Intermountain West also took place in Utah. The impact on woodland area of the agricultural bull fence alone was significant. More recent study area woodland expansion also occurred. Because intensive industrial activity associated with development of the Tintic Mining District occurred prior to the taking of the study\u27s 1911 photographs, those photos failed to reflect presettlement, or even early settlement, vegetation conditions. Overall, results suggest that historical ecological studies must employ a range of overlapping methodologies to accurately interpret the nature and direction of landscape vegetation change. Such information is useful for managing regional ecosystems now and into the future
Quantum graphs with singular two-particle interactions
We construct quantum models of two particles on a compact metric graph with
singular two-particle interactions. The Hamiltonians are self-adjoint
realisations of Laplacians acting on functions defined on pairs of edges in
such a way that the interaction is provided by boundary conditions. In order to
find such Hamiltonians closed and semi-bounded quadratic forms are constructed,
from which the associated self-adjoint operators are extracted. We provide a
general characterisation of such operators and, furthermore, produce certain
classes of examples. We then consider identical particles and project to the
bosonic and fermionic subspaces. Finally, we show that the operators possess
purely discrete spectra and that the eigenvalues are distributed following an
appropriate Weyl asymptotic law
Magnetoresistance of a semiconducting magnetic wire with domain wall
We investigate theoretically the influence of the spin-orbit interaction of
Rashba type on the magnetoresistance of a semiconducting ferromagnetic
nanostructure with a laterally constrained domain wall. The domain wall is
assumed sharp (on the scale of the Fermi wave length of the charge carriers).
It is shown that the magnetoresistance in such a case can be considerably
large, which is in a qualitative agreement with recent experimental
observations. It is also shown that spin-orbit interaction may result in an
increase of the magnetoresistance. The role of localization corrections is also
briefly discussed.Comment: 5 pages, 2 figure
- …