17 research outputs found

    Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and the Bahamas

    Get PDF
    Microbial communities of the sponges Callyspongia sp. from Hong Kong and Callyspongia plicifera (Porifera: Demospongia) from the Bahamas were compared with each other and with those from reference substrata using a terminal restriction fragment length polymorphism (T-RFLP) analysis. The least number of bacterial ribotypes and bacterial isolates were retrieved from Bahamas reference and sponge surfaces, while the bacterial communities from Hong Kong Callyspongia sp. and reference surfaces were more diverse. Microbial communities from the 2 sponges were different from each other and from reference substrata. Gas chromatographic–mass spectrometric (GC-MS) analysis of dichloromethane extracts revealed that more than 60% of the compounds were similar in the 2 species Callyspongia sp. and C. plicifera, compared to the compounds of Halichondria spp. At tissue level (TL) concentrations, both sponge extracts predominantly inhibited the growth of bacteria from reference substrata. Multifactor ANOVA revealed that the source of bacteria (sponge surface, interior, or reference substrata), the geographic location of isolates (Hong Kong or the Bahamas), thesponge extract (from Callyspongia sp. or from C. plicifera), and combinations of these factors contributed significant effects in disc diffusion assay experiments. Sponge extracts at both TL concentrations and 10× dilutions were toxic to larvae of the polychaete Hydroides elegans and the barnacle Balanus amphitrite. Our results suggest that the 2 congeneric sponges Callyspongia spp. from different biogeographic regions have different bacterial associates, while producing relatively similar secondary metabolites. It remains to be explored whether differences in sponge-associated bacterial communities will also hold for other congeneric sponge species from different regions

    Gramella portivictoriae sp nov, a novel member of the family Flavobacteriaceae isolated from marine sediment (vol 55, pg 2497, 2005)

    Get PDF
    A yellow-pigmented, Gram-negative, slowly gliding, rod-shaped, strictly aerobic bacterium (UST040801-001T) was isolated from marine sediment. The DNA G+C content was 39?9 mol%. The predominant fatty acids were a15 : 0, i15 : 0, i15 : 0 3-OH, i17 : 1v9c, i17 : 0 3-OH and summed feature 3, comprising i15 : 0 2-OH and/or 16 : 1v7c (altogether representing 76?2% of the total). MK-6 was the only respiratory quinone. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences indicated that Gramella echinicola KMM 6050T (the only species in the genus) was the closest relative of UST040801-001T, sharing 98?0% sequence similarity. The DNA–DNA relatedness between UST040801-001T and Gramella echinicola KMM 6050T was 13 %. Strain UST040801-001T can be distinguished from G. echinicola by means of 11 phenotypic traits. The results of molecular and phenotypic analyses suggested that UST040801-001T represents a novel species of Gramella. The name Gramella portivictoriae sp. nov. is proposed for this bacterium, with UST040801-001T (=NRRL 41137T=JCM 13192T) as the type strain

    Description of Fabibacter halotolerans gen. nov., and reclassification of [Marinicola] seohaensis as Roseivirga seahaensis comb. nov.

    Get PDF
    Bacterial strains UST030701-097T and UST030701-084T were isolated from a marine sponge in the Bahamas. Both strains were pink-pigmented, Gram-negative, strictly aerobic and chemo-organotrophic. Cells of strain UST030701-097T were short, curved rods with fast-gliding motility, whereas those of strain UST030701-084T were straight rods with a less rapid gliding motion. The two strains had MK-7 as the major respiratory quinone and did not produce flexirubin-type pigments. The DNA G+C contents of strains UST030701-097T and UST030701-084T were 42.5 and 43.7 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains belonged to the family 'Flexibacteraceae' of the phylum Bacteroidetes. 16S rRNA gene sequence similarity between strains UST030701-097T and UST030701-084T was 95.0 %; their closest relative was [Marinicola] seohaensis, with 93.3 % and 96.0 % sequence similarity, respectively. Phylogenetic tree topology indicated that the two strains belonged to the same lineage, but were on separate branches. Whilst strain UST030701-084T and [Marinicola] seohaensis were found on one branch, strain UST030701-097T was in another branch that had no species with validly published names. Based on the polyphasic taxonomic data obtained in the present study, we propose that strain UST030701-097T represents a novel genus and that strain UST030701-084T represents a novel species in the phylum Bacteroidetes. The genus Fabibacter gen. nov. is proposed, with strain UST030701-097T (=NRRL B-41220T=JCM 13334T) as the type strain of the type species, Fabibacter halotolerans sp. nov. Strain UST030701-084T (=NRRL B-41219T=JCM 13337T) is proposed as the type strain of Roseivirga spongicola sp. nov. In an earlier study, it was suggested that the genus Marinicola is a later heterotypic synonym of the genus Roseivirga. However, a formal proposal to reclassify [Marinicola] seohaensis, the only member of the genus Marinicola, has not yet been made. The results of phylogenetic analyses in this study support the reclassification of [Marinicola] seohaensis as Roseivirga seohaensis comb. nov

    Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the Bahamas, and emended description of Nonlabens tegetincola

    Get PDF
    A bacterial strain, UST030701-156T, was isolated from a marine sponge in the Bahamas. Strain UST030701-156T was orange-pigmented, Gram-negative, rod-shaped with tapered ends, slowly motile by gliding and strictly aerobic. The predominant fatty acids were a15 : 0, i15 : 0, i15 : 0 3-OH, i17 : 0 3-OH, i17 : 1ω9c and summed feature 3, comprising i15 : 0 2-OH and/or 16 : 1ω7c. MK-6 was the only respiratory quinone. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences placed UST030701-156T within a distinct lineage in the family Flavobacteriaceae, with 93·3 % sequence similarity to the nearest neighbour, Nonlabens tegetincola. The DNA G+C content of UST030701-156T was 41·0 mol% and was much higher than that of N. tegetincola (33·6 mol%). Strain UST030701-156T can be distinguished from other members of the Flavobacteriaceae by means of a number of chemotaxonomic and phenotypic characteristics. It is proposed, therefore, that UST030701-156T represents a novel taxon designated Stenothermobacter spongiae gen. nov., sp. nov. The type strain is UST030701-156T (=NRRL B-41138T=JCM 13191T). Carbon-source utilization by N. tegetincola was re-examined and an emended description is therefore included

    A New Method for Treating Burn Wounds Using Targeted Delivery of Medicinal Substances by Magnetic Nanocarrier (Experimental Part)

    Get PDF
    Проведено экспериментальное исследование на лабораторных животных по изучению эффективности адресной доставки мази левомеколь с помощью магнитных наночастиц и внешнего магнитного поля при термических ожогах. В исследовании принимало участие 20 крыс с двумя очагами ожога. Крысы были разделены на 4 группы: без лечения, терапия с использованием мази левомеколь, лечение с использованием наночастиц, мази левомеколь и внешнего магнитного поля и только магнитотерапии. При гистологическом исследовании на 14-е сутки во всех группах в зоне термического повреждения кожи были отмечены признаки глубокого ожога III и IV степени с распространением некроза на всю глубину дермы и на мышцы. В группе с наночастицами, мазью левомеколь и магнитным полем на фоне уменьшения воспаления отмечалось очаговое появление грануляционной ткани. Таким образом, гистологические исследования ожогового раневого процесса лабораторных животных показали, что использование инновационного биологически активного ранозаживляющего средства на основе наночастиц в сочетании с мазью левомеколь улучшает регенерацию тканей и приводит к ускорению эпителизации, что в целом повышает результаты лечения ожоговой раны. Использование внешнего магнитного поля способствует адресной доставке лечебного нанокомплекса и поддержанию оптимальной концентрации препарата в ранеExperimental studies have been carried out on laboratory animals to investigate the effectiveness of targeted delivery of levomekol ointment using magnetic nanoparticles and an external magnetic field for treatment of thermal burns. The study involved 20 rats, with two burns on each. The rats were divided into 4 groups: untreated; treated with levomekol ointment; treated with levomekol ointment associated with nanoparticles and an external magnetic field; and treated with magnetic field alone. Histological examination was conducted on Day 14, and in all groups, in the thermal burn zone of the skin there were signs of deep three- and four-degree burns with necrosis spread through the dermis, reaching the muscle. In the group with levomekol ointment associated with nanoparticles and magnetic field, inflammation was decreased, and focal granulation tissue formation was observed. Thus, histological studies of the burn wound process in laboratory animals showed that the use of an innovative biologically active wound healing agent based on nanoparticles in combination with the levomecol ointment improved tissue regeneration and accelerated epithelialization, which enhanced the effectiveness of burn wound treatment. The use of an external magnetic field facilitated targeted delivery of the therapeutic nanosystem and maintenance of the optimal concentration of the drug in the woun

    Larval recruitment of the blue mussel Mytilus edulis: The effect of flow and algae

    No full text
    The mussel Mytilus edulis settlement and distribution was studied on plastic panels with manipulated flow regime (faired, bluff, split and angled) with or without water soluble metabolites of the green alga Cladophora rupestris. The panels were exposed vertically on a device (hydrovane) that ensures their constant orientation in the current during the peak of larval settlement at 1 m depth. In order to investigate larval distribution on the panels, half of them were coated with a silicone vacuum grease that prevents larvae from de-attachment. This grease was not toxic and did not attract or repel larvae. Low densities of larvae on the un-greased plates compared to the greased ones suggested that some of larvae left the substratum. The blue mussel larvae initially settled in regions of reduced shear velocity and then redistribute to the regions of high shear velocity. The presence of the alga increased the density of blue mussel larvae and changed their distribution on the panels. Overall, our results demonstrated that larval recruitment of M. edulis is an active process affected both by boundary-layer hydrodynamics and algal waterborne compounds

    Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms

    No full text
    In this study, we investigated the effect of mono-species and multi-species biofilms on larval attachment of the bryozoan Bugula neritina. The effect of biofilms was examined through a double-dish choice bioassay in which larvae were given the choice of attaching either to a clean surface of a container or to surfaces covered with biofilms. Larvae attached in response to mono-species biofilms of 5 out of 7 bacterial isolates from a subtidal region, but they avoided surfaces covered by biofilms of 7 out of 8 isolates obtained from an intertidal region. In the follow-up choice experiments with multi-species biofilms developed for 2 days, 7 days, 14 days, 28 days and 30 days, larvae preferentially attached to filmed surfaces over the unfilmed surfaces. When biofilms from 2 different tidal regions (intertidal and subtidal) were offered as choices in the double-dish bioassay, larvae in all cases attached on the subtidal biofilms. Two-day-old subtidal biofilms with low densities of bacteria induced significantly higher (p < 0.05) attachment than did 30- day-old intertidal biofilms, which had high bacterial density. Terminal Restriction Fragment Polymorphism (T-RFLP) analysis revealed that the bacterial communities were substantially different in the subtidal and intertidal regions during all periods of the experiment. Attachment of B. neritina on subtidal biofilms did not depend on the bacterial density but rather was negatively correlated with diatom density, thickness of the exopolysaccharide layer and biofilm age. Our results suggest that the larvae of B. neritina can discriminate between biofilmed and clean surfaces and between biofilms developed under different tidal zones

    Inhibition of biofouling by marine microorganisms and their metabolites

    No full text
    Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of “environmentally-friendly” antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted

    Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus

    No full text
    Modern antifouling coatings use heavy metals and toxic organic molecules to prevent biofouling, the undesirable growth of marine organisms on man-made substrata. In an ongoing survey of deep-sea microorganisms aimed at finding low toxic antifouling metabolites, an actinomycete bacterium was isolated from the Pacific sediment at the depth of about 5000 m. The bacterium was closely related to Streptomyces fungicidicus (99% similarity) according to 16S ribosomal RNA sequence information. The spent culture medium of this bacterium inhibited barnacle larval attachment. Bioassay-guided fractionation was employed to isolate antifouling compounds. The ethyl acetate extract was fractionated by using an open silica gel column. Active fractions were further purified on a HPLC C18 column. Five diketopiperazines, cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Pro), cyclo-(L-Trp-L-Pro), and cyclo-(L-Leu-L-Val) were isolated for the first time from a deep sea bacterium, and the structures of the compounds were elucidated by nuclear magnetic resonance spectroscopy and mass spectrometry. The pure diketopiperazines were tested for antilarval activity using the barnacle Balanus amphitrite. Effective concentrations that inhibited 50% larval attachment (EC50) after 24 h ranged from 0.10- 0.27 mM. The data suggest that diketopiperazines and other compounds from deep-sea bacteria may be used as novel antifoulants
    corecore