115 research outputs found

    Nuclear Spin Relaxation for Higher Spin

    Full text link
    We study the relaxation of a spin I that is weakly coupled to a quantum mechanical environment. Starting from the microscopic description, we derive a system of coupled relaxation equations within the adiabatic approximation. These are valid for arbitrary I and also for a general stationary non--equilibrium state of the environment. In the case of equilibrium, the stationary solution of the equations becomes the correct Boltzmannian equilibrium distribution for given spin I. The relaxation towards the stationary solution is characterized by a set of relaxation times, the longest of which can be shorter, by a factor of up to 2I, than the relaxation time in the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure

    Hyperfine-mediated transitions between a Zeeman split doublet in GaAs quantum dots: The role of the internal field

    Full text link
    We consider the hyperfine-mediated transition rate between Zeeman split spin states of the lowest orbital level in a GaAs quantum dot. We separate the hyperfine Hamiltonian into a part which is diagonal in the orbital states and another one which mixes different orbitals. The diagonal part gives rise to an effective (internal) magnetic field which, in addition to an external magnetic field, determines the Zeeman splitting. Spin-flip transitions in the dots are induced by the orbital mixing part accompanied by an emission of a phonon. We evaluate the rate for different regimes of applied magnetic field and temperature. The rates we find are bigger that the spin-orbit related rates provided the external magnetic field is sufficiently low.Comment: 8 pages, 3 figure

    Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture

    Full text link
    We theoretically consider coherence times for spins in two quantum computer architectures, where the qubit is the spin of an electron bound to a P donor impurity in Si or within a GaAs quantum dot. We show that low temperature decoherence is dominated by spin-spin interactions, through spectral diffusion and dipolar flip-flop mechanisms. These contributions lead to 1-100 μ\mus calculated spin coherence times for a wide range of parameters, much higher than former estimates based on T2T_{2}^{*} measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the approximations employed in the spectral diffusion calculation. Final version to appear in Phys. Rev.

    Topological defects and Goldstone excitations in domain walls between ferromagnetic quantum Hall effect liquids

    Full text link
    It is shown that the low-energy spectrum of a ferromagnetic quantum Hall effect liquid in a system with a multi-domain structure generated by an inhomogeneous bare Zeeman splitting ϵZ\epsilon_{Z} is formed by excitations localized at the walls between domains. For a step-like ϵZ(r)\epsilon_Z(r), the domain wall spectrum includes a spin-wave with a linear dispersion and a small gap due to spin-orbit coupling, and a low-energy topological defects. The latter are charged and may dominate in the transport under conditions that the percolation through the network of domain walls is provided.Comment: 4 pages, 1 fi

    A New Type of Electron Nuclear-Spin Interaction from Resistively Detected NMR in the Fractional Quantum Hall Effect Regime

    Full text link
    Two dimensional electron gases in narrow GaAs quantum wells show huge longitudinal resistance (HLR) values at certain fractional filling factors. Applying an RF field with frequencies corresponding to the nuclear spin splittings of {69}Ga, {71}Ga and {75}As leads to a substantial decreases of the HLR establishing a novel type of resistively detected NMR. These resonances are split into four sub lines each. Neither the number of sub lines nor the size of the splitting can be explained by established interaction mechanisms.Comment: 4 pages, 3 figure

    Nuclear spin relaxation probed by a single quantum dot

    Full text link
    We present measurements on nuclear spin relaxation probed by a single quantum dot in a high-mobility electron gas. Current passing through the dot leads to a spin transfer from the electronic to the nuclear spin system. Applying electron spin resonance the transfer mechanism can directly be tuned. Additionally, the dependence of nuclear spin relaxation on the dot gate voltage is observed. We find electron-nuclear relaxation times of the order of 10 minutes

    Nuclear Spin Qubit Dephasing Time in the Integer Quantum Hall Effect Regime

    Full text link
    We report the first theoretical estimate of the nuclear-spin dephasing time T_2 owing to the spin interaction with the two-dimensional electron gas, when the latter is in the integer quantum Hall state, in a two-dimensional heterojunction or quantum well at low temperature and in large applied magnetic field. We establish that the leading mechanism of dephasing is due to the impurity potentials that influence the dynamics of the spin via virtual magnetic spin-exciton scattering. Implications of our results for implementation of nuclear spins as quantum bits (qubits) for quantum computing are discussed.Comment: 19 pages in plain Te

    Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect

    Full text link
    With unusually slow and high-resolution sweeps of magnetic field, strong, ultra-narrow (width down to 100μT100 {\rm \mu T}) resistance peaks are observed in the regime of breakdown of the quantum Hall effect. The peaks are dependent on the directions and even the history of magnetic field sweeps, indicating the involvement of a very slow physical process. Such a process and the sharp peaks are, however, not predicted by existing theories. We also find a clear connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR

    Dynamic nuclear polarization at the edge of a two-dimensional electron gas

    Full text link
    We have used gated GaAs/AlGaAs heterostructures to explore nonlinear transport between spin-resolved Landau level (LL) edge states over a submicron region of two-dimensional electron gas (2DEG). The current I flowing from one edge state to the other as a function of the voltage V between them shows diode-like behavior---a rapid increase in I above a well-defined threshold V_t under forward bias, and a slower increase in I under reverse bias. In these measurements, a pronounced influence of a current-induced nuclear spin polarization on the spin splitting is observed, and supported by a series of NMR experiments. We conclude that the hyperfine interaction plays an important role in determining the electronic properties at the edge of a 2DEG.Comment: 8 pages RevTeX, 7 figures (GIF); submitted to Phys. Rev.

    Triplet-Singlet Spin Relaxation via Nuclei in a Double Quantum Dot

    Full text link
    The spin of a confined electron, when oriented originally in some direction, will lose memory of that orientation after some time. Physical mechanisms leading to this relaxation of spin memory typically involve either coupling of the electron spin to its orbital motion or to nuclear spins. Relaxation of confined electron spin has been previously measured only for Zeeman or exchange split spin states, where spin-orbit effects dominate relaxation, while spin flips due to nuclei have been observed in optical spectroscopy studies. Using an isolated GaAs double quantum dot defined by electrostatic gates and direct time domain measurements, we investigate in detail spin relaxation for arbitrary splitting of spin states. Results demonstrate that electron spin flips are dominated by nuclear interactions and are slowed by several orders of magnitude when a magnetic field of a few millitesla is applied. These results have significant implications for spin-based information processing
    corecore