45 research outputs found

    Multiscale analysis of turbulence-flame interaction in premixed flames

    Get PDF
    Multiscale analysis of turbulence-flame interaction is performed using direct numerical simulation (DNS) data of premixed flames. Bandpass filtering method is used to educe turbulent eddies of various sizes and their vorticity and strain rate fields. The vortical structures at a scale of L ω are stretched strongly by the most extensional principal strain rate of eddies of scale 4L ω , which is similar to the behaviour in non-reacting turbulence. Hence, combustion does not influence the physics of vortex stretching mechanism. The fractional contribution from eddies of size L s to the total tangential strain rate is investigated. The results highlight that eddies larger than two times the laminar flame thermal thickness contributes predominantly to flame straining and eddies smaller than 2δ th contributes less than 10% to the total tangential strain rate for turbulence intensities, from u′/s L = 1.41 to u′/s L = 11.25, investigated here. The cutoff scale identified through this analysis is larger than the previous propositions and the implication of this finding to subgrid scale premixed combustion modelling is discussed.N.A.K.D. acknowledges the financial support of the Qualcomm European Research Studentship Fund in Technology. N. C. acknowledges the financial support of EPSRC

    Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach.

    Get PDF
    We propose a physics-constrained machine learning method-based on reservoir computing-to time-accurately predict extreme events and long-term velocity statistics in a model of chaotic flow. The method leverages the strengths of two different approaches: empirical modelling based on reservoir computing, which learns the chaotic dynamics from data only, and physical modelling based on conservation laws. This enables the reservoir computing framework to output physical predictions when training data are unavailable. We show that the combination of the two approaches is able to accurately reproduce the velocity statistics, and to predict the occurrence and amplitude of extreme events in a model of self-sustaining process in turbulence. In this flow, the extreme events are abrupt transitions from turbulent to quasi-laminar states, which are deterministic phenomena that cannot be traditionally predicted because of chaos. Furthermore, the physics-constrained machine learning method is shown to be robust with respect to noise. This work opens up new possibilities for synergistically enhancing data-driven methods with physical knowledge for the time-accurate prediction of chaotic flows

    Filtered Reaction Rate Modelling in Moderate and High Karlovitz Number Flames: an a Priori Analysis

    Get PDF
    Abstract: Direct numerical simulations (DNS) of statistically planar flames at moderate and high Karlovitz number (Ka) have been used to perform an a priori evaluation of a presumed-PDF model approach for filtered reaction rate in the framework of large eddy simulation (LES) for different LES filter sizes. The model is statistical and uses a presumed shape, based here on a beta-distribution, for the sub-grid probability density function (PDF) of a reaction progress variable. Flamelet tabulation is used for the unfiltered reaction rate. It is known that presumed PDF with flamelet tabulation may lead to over-prediction of the modelled reaction rate. This is assessed in a methodical way using DNS of varying complexity, including single-step chemistry and complex methane/air chemistry at equivalence ratio 0.6. It is shown that the error is strongly related to the filter size. A correction function is proposed in this work which can reduce the error on the reaction rate modelling at low turbulence intensities by up to 50%, and which is obtained by imposing that the consumption speed based on the modelled reaction rate matches the exact one in the flamelet limit. A second analysis is also conducted to assess the accuracy of the flamelet assumption itself. This analysis is conducted for a wide range of Ka, from 6 to 4100. It is found that at high Ka this assumption is weaker as expected, however results improve with larger filter sizes due to the reduction of the scatter produced by the fluctuations of the exact reaction rate
    corecore