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Abstract

The classical energy cascade in turbulence as described by Richardson and Kolmogorov is pre-

dominantly a conjecture relying on the locality of interactions between scales of turbulence. This

picture is generally accepted and assumes that energy and enstrophy transfers occur between neigh-

bouring scales of turbulence and that vortex stretching plays a major role in the dynamics of this

energy cascade. Direct numerical simulation data for Reλ ranging from 37 to 1131 is used to gather

evidence for the cascade by investigating the energy and enstrophy fluxes between scales and the

interplay between vorticity at one scale and strain at an adjacent scale. This is achieved by using a

bandpass filter to educe the turbulent structures at various length scales allowing one to determine

the fluxes between these scales and to interrogate the role of non-local (in physical-space) vortex

stretching. It is shown that the structures of a length scale L mostly transfer their energy to

structures of size 0.3L and that most of the enstrophy flux goes from structures of scale L to 0.3L.

Furthermore, vortical structures of a length scale Lω are stretched mostly by straining structures

of size 3 to 5Lω and the stretching by eddies of sizes larger than 10Lω is negligible. The stretching

is dominated by the most extensive principal strain rate of the straining structures. These obser-

vations are found to be independent of Reλ for the range investigated in this study. These results

provide strong evidence for the classical view of an energy cascade transferring energy from large

to small scales through a hierarchy of steps, each step consisting of the stretching of vortices by

somewhat larger structures.

∗ nakd2@cam.ac.uk
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I. INTRODUCTION

Turbulent flows are often pictured as a hierarchy of eddies of different scales whose mor-

phology and spatial clustering depend on the turbulence Reynolds number. Many views have

been proposed in the past to describe the interaction of these eddies and how the energy

cascades through these scales from the large energy-containing eddies to the small dissipa-

tive structures. In particular, the Richardson/Kolmogorov energy cascade [1, 2] conjectured

that kinetic energy introduced at large scales is progressively transferred to smaller and

smaller scales through the inertial range, eventually reaching the Kolmogorov scale where

it is dissipated by the fluid viscosity. The key assumption of this conjecture is the scale

locality of the cascade, the idea by which eddies mainly interact with and transfer energy

to eddies of neighbouring (smaller) sizes.

Historically, turbulence and turbulent structures have often been described in spectral

space and their wave numbers become a surrogate for their physical scales. In this formalism,

the locality of the energy cascade is understood as the proximity between interacting wave

numbers. From this perspective, various closure models relying on this notion of cascade

for turbulence were developed based on algebraic expressions for the spectral kinetic energy

transfer function [3–5] with reasonable success. Furthermore, the locality of the energy

cascade in wave number space was assessed by studying the interactions between triads

of wave numbers and their contribution to the energy flux. It was shown that the energy

transfer was dominated by local wave number triad interactions [6–9]. Approaches analogous

to the analysis of the spectral energy transport equation had also been performed in physical

space using the two-point velocity correlation transport equation and the Karman-Howarth

equation [10]. In this context, the family of closures proposed are the quasi-normal-type

schemes which assume that for the fourth-order velocity correlations terms, the joint-pdf of

the velocity field measured at two points is Gaussian. This then allows to close the Karman-

Howarth equations and these closures are reviewed in [11]. However, there is an inherent

arbitrary nature to the approximations used and the heuristic modifications required to

correct these models. Thus, there is no consensus on the locality of the scale interactions in

physical space. Indeed, some studies have both supported the assumption of scale-locality

[12–15] while others have shown that energy could be transferred directly from large scales

to much smaller ones [16–18]. Clear evidence for this scale-locality of the energy cascade
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using real space quantities is scant.

Nonetheless, from the physical space perspective, since Taylor’s work [19, 20], it has

often been suggested that the mode of energy transfer across the scales is through vortex

stretching, in which vortical structures of a given scale are stretched and intensified by

larger vortices, leading to the transfer of energy from the larger to the smaller eddies with

the smallest eddies having a worm-like shape, an idea that dates back to Burgers [21]. In

particular, the rate of generation of enstrophy, Ω = |ω|2/2, by vortex stretching, ψ = ωiωjSij,

is often taken as a proxy for energy transfer in real scale space [22, 23].

Despite the relatively wide acceptance of this classical picture interweaving energy cascade

and vortex stretching, rigorous evidence supporting this association remains elusive and

additional investigations are required to support the vortex stretching picture and its locality

in scale space. Indeed, past Direct Numerical Simulations (DNS) [24–27] and experiments

[28, 29] show that the vorticity aligns preferentially with the intermediate strain rate, β,

which suggests the formation of vortex sheets rather than vortex tubes [22]. By contrast,

one would expect ω to preferentially align with α if the vortices being stretched are tube-

like (worms) [22]. This apparent disconnect stems from the influence of local (in physical

space) straining associated with the self-induced strain fields of vortices [30, 31]. Indeed,

when these effects are excluded and only non-local straining in physical space retained, it

is found that ω is indeed aligned, on average, with α [32–34]. The effects of self-straining

can be filtered out by using a bandpass filter to educe vorticity and straining structures of

different scales and examine their mutual interaction. This shows that, for modest values

of Taylor microscale Reynolds numbers, Reλ, a vortex of a given size is stretched primarily

by the α strain from structures that are 3 to 5 times larger than the vortical structure

[34]. These results were obtained for homogeneous isotropic turbulence and similar results

supporting the scale-locality of the energy cascade and the vortex stretching in shear flows

were reported in [35–37]. By contrast, if one does only consider the alignment between

vorticity and straining structures at the same scale, and thus not excluding the self-straining

effect, the preferential alignment of ω with β is retained [34, 38].

The relatively low Reλ of 107 [32] and 141 [34] in the previous studies raises questions as to

the validity of their findings for higher Reynolds numbers, particularly as it is often suggested

that high Reλ turbulence presents dynamical features that differ from lower Reynolds number

turbulence. For example, Ishihara et al. [39] examined data at Reλ = 1131 and highlighted
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the appearance of thin shear layers consisting of clusters of thin intense vortex tubes. They

suggested that the spatial structure of turbulence undergoes a transition as Reλ approaches

1000, with larger values of Reλ favouring the clustering of vortex worms into slabs or sheets.

This clustering is less apparent at lower Reλ. Thus, a definitive theory of the energy cascade,

applicable across all Reλ, remains elusive.

The objectives of this study are (i) to revisit the classical cartoon of the energy cascade

using DNS data to investigate its locality in scale space, through a clear analysis of the

energy and enstrophy transfers, and vortex stretching mechanism between various scales; (ii)

to investigate whether or not the nature of the cascade changes with Reλ and in particular

whether the results observed in [34] for Reλ = 141 are valid for smaller and larger Reynolds

numbers; and (iii) to study the morphology of the straining and strained structures. These

objectives are addressed by analysing DNS data for Reλ ranging from 37 to 1131. Each

dataset is analysed using the bandpass filtering method [34] which allows one to focus on

structures of a chosen length scale, L. The morphological features of these structures are

then analysed using Minkowski functionals. The present work will thus mainly focus on

the scale-locality of the energy cascade using quantities in real space rather than in wave

number space and not on the spatial locality of the energy/enstrophy transfer.

The scale decomposition framework used here is described in section II along with the

methodologies used for analysis. Details on the various DNS datasets used are provided in

section III. The results are then discussed in section IV which focuses on (i) the morpholog-

ical features of turbulent structures, (ii) the transfer of energy and enstrophy across scales

of turbulence and (iii) the interaction of turbulent structures through the analysis of the

vortex stretching mechanism. Conclusions are summarised in the final section.

II. ANALYSIS METHOD

A. Scale decomposition

To analyse the scale-by-scale transfer and interaction, following earlier works [40, 41],

one can decompose the velocity, u, and vorticity, ω, into large and small scales such that

u = uL + uS and ω = ωL + ωS, where the superscripts L and S denote the contribution

of structures respectively larger and smaller than a specified scale r. Such decomposition is
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not unique and depends on the low-pass filter used to yield ωL and uL. This aspect will be

tackled subsequently.

Nonetheless, using this formalism, an energy equation for the large and small scales can

be deduced by taking the dot product of uL and uS with the Navier-Stokes equations and

ensemble averaging the resulting equations [40, 41]. This gives

∂

∂t

〈
1

2
(uL)2

〉
= −ΠV − ν

〈
(ωL)2

〉
(1)

∂

∂t

〈
1

2
(uS)2

〉
= ΠV − ν

〈
(ωS)2

〉
(2)

for the energy in scales L and S respectively. The symbol ΠV is defined as:

ΠV (r) =
〈
SL

ijτ
S

ij − SS

ijτ
L

ij

〉
(3)

with Sij the symmetric strain-rate tensor, τLij = −uLi uLj and τSij = −uSi uSj are the Reynolds

stresses at large and small scales. In the present formalism, as ΠV (r) appears in both

equations with an opposite sign, it can be interpreted as the flux of energy from larger to

smaller scales across the scale r.

In a similar manner, by taking the dot product of ωL or ωS with the vorticity equation,

one can obtain the enstrophy equations for the large and small structures [41]:

∂

∂t

〈
1

2
(ωL)2

〉
= −F (r) +GL(r)− ν

〈
(∇× ωL)2

〉
(4)

∂

∂t

〈
1

2
(ωS)2

〉
= F (r) +GS(r)− ν

〈
(∇× ωS)2

〉
(5)

with

F (r) =
〈
ωL · (u · ∇ωS)

〉
= −

〈
ωS · (u · ∇ωL)

〉
(6)

GL(r) =
〈
ωL · (ω · ∇u)

〉
=
〈
ωL

i ωjSij

〉
(7)

GS(r) =
〈
ωS · (ω · ∇u)

〉
=
〈
ωS

i ωjSij

〉
(8)

Here, GL(r) and GS(r) represent the generation of enstrophy via vortex stretching at large

and small scales respectively and F (r) is the transfer or flux of enstrophy across the scale

r, from larger to smaller scales.

From this formalism, the transfer of energy and enstrophy from scales L to S across the

scale r can be analysed by studying the flux functions, ΠV for the energy and F for the
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enstrophy as has been done by Davidson et al. [41]. The interest of the present work is to

investigate the interactions between a given scale L and various smaller scales S to identify

the range of scales interacting with structures at scale L and thus assess the locality of the

energy/enstrophy transfer. This is achieved by using the bandpass filtering method proposed

by Leung et al. [34] described in the next section.

B. Bandpass filtering

This filtering procedure allows one to educe structures of a chosen length scale, L, in

physical space as has been demonstrated by Leung et al. [34]. In this method, the Fourier

transform of the bandpass filtered velocity field is simply related to the Fourier transform

of the unfiltered field and it is written as

ûL
b =

α√
L
2κ2 exp(−κ2)û(k), (9)

where k is the wave number vector, κ = kL/2 with k = |k| and α =
√
2 [34]. Then,

applying the inverse Fourier transform to the filtered field, a bandpass filtered velocity field,

uL
b , is obtained. The fields of vorticity, strain-rate and Reynolds stresses at scale L are then

computed through:

ωL = ∇× uL
b , SL

ij =
1

2

(
∂uLb,i
∂xj

+
∂uLb,j
∂xi

)
, τLij = −uLi uLj (10)

By using this technique, one can educe these “large” and “small” scales separately, and

not necessarily across a given scale r. The bandpass filtered velocity at some specified scales

L and S, with L > S, can be used in Eqs. (3) and (6) to directly compute the transfer of

energy or enstrophy from structures of scale L to those of scale S, ie,

ΠL→S
V,b = 〈SL

ij,bτ
S
ij,b − SS

ij,bτ
L
ij,b〉 (11)

FL→S
b = 〈ωL

b · (u · ∇ωS
b )〉 (12)

where the subscript b indicates the use of bandpass filtered fields.

Furthermore, to analyse the vortex stretching mechanism, one can analyse the interplay

between the vorticity at scale Lω and the strain rate at Ls. Indeed, the rate of generation

of enstrophy at scale Lω due to straining structures at scale Ls can be expressed as:

ψ = ωLω

i ωLω

j SLs

ij = |ωLω |2
(
αLs cos2 θα + βLs cos2 θβ + γLs cos2 θγ

)
(13)

7



where αLs, βLs and γLs are the principal components of SLs

ij with αLs > βLs > γLs and θi

are the corresponding angles between the vorticity vector and these principal components.

Thus, to analyse the vortex stretching mechanism, one can analyse the alignment statistics

as measured by the pdf of cos(θi) between vortical structures at a length scale Lω and

straining structures at a larger length scale Ls.

C. Morphology descriptor

The Minkowski functionals are used to perform an objective analysis of the morphology

of turbulent structures educed at various scales using the bandpass filtering methodology.

These Galilean invariants are commonly used in cosmology, for example [42], and describe

the morphology of a given three dimensional structure. The four functionals for a three

dimensional structure are given by [43]:

V0 = V, V1 =
A

6
, V2 =

1

3π

∫

A

K1 +K2

2
dA, V3 =

1

2π

∫

A

K1K2 dA (14)

V is the volume enclosed by the three dimensional object with a surface area, A. The

principal curvatures at a given point on this surface are K1 and K2. Using these Minkowski

functional, one can then define the shapefinders - length, ℓ, width, w, and thickness, t,

ordered as t < w < ℓ and computed using

t =
V0
2V1

, w =
2V1
πV2

, ℓ =
3V2
2V3

(15)

It should be noted that particular care is taken with V3 as holes could be present in the

structure, thus yielding V3 ≤ 0. In those case, ℓ is defined as ℓ = 3V2/(4(G + 1)) where

G = 1 − V3/2 is the genus of the structure. The genus of a structure is the number of cuts

that can be made along a simple curve on the object without splitting it [44]. From these

three characteristics length scales, two quantities called planarity, P, and filamentarity, F ,

can be defined [43]:

P =
w − t

w + t
, F =

ℓ− w

ℓ+ w
(16)

These two dimensionless quantities are bounded between 0 and 1 and can then be used to

classify the considered three dimensional object in terms of simple shapes, such as a blob or

sphere (P,F) = (0, 0), very long tube (0, 1), thin sheet (1, 0) and very long ribbon (1,1) as

noted by Leung et al. [34].
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This procedure has been applied on vortical and straining structures educed at various

length scales as will be detailed in section IVA.

III. DNS DATASET

DNS data of homogeneous isotropic turbulence are used here. These datasets, from

Ishihara et al. [39], Tanahashi et al. [45], Donzis et al. [46], Kobayashi et al. [47], cover Reλ

from 37 to 1131 (or integral length scale Reynolds number, Re l, from 97 to 36,345) as listed

in Table I. These datasets cover the widest range of Reynolds number currently available and

are from a variety of research groups. The computational domain for each dataset is a triply

periodic cube of length 2π with N grid points in each direction. Two cases at Reλ = 140 and

1131 have forced turbulence while all the others have freely decaying turbulence. The case

at Reλ = 140 uses stochastic forcing at large scale, applied on wave numbers smaller than

Kc = 2
√
2 [46, 48]. For the case at Reλ = 1131, the forcing is performed in wave-number

space as f̂ (k) = cû(k) where f̂ is the Fourier transform of the forcing and c is a non-zero

coefficient independent of k and is equal to Γ for k < KC and 0 otherwise. The value Γ was

adapted at each time step so as to maintain the total kinetic energy, E, inside the domain.

The value of Kc was taken to be 2.5 for the Reλ = 1131 case [39]. It should be noted that

these forcing schemes mainly affect structures of turbulence of a scale of about 2π/Kc and

have a decreasing influence as one considers smaller and smaller scales. This scale of 2π/Kc

corresponds to approximately 190η and 4900η respectively for the cases at Reλ = 140 and

Reλ = 1131, where η is the Kolmogorov length scale. Thus for the range of scales considered

here, the influence of the forcing scheme should be limited. This will be further discussed

in Sec. IVB.

The analysis presented here is performed on snapshots of the data taken once the tur-

bulence is fully developed, as judged by the velocity derivative skewness approaching −0.5.

Since only instantaneous snapshots are available for analysis, the temporal aspects of the

energy cascade is not studied here. Characteristics of each case required for this study are

summarised in Table I and more details on these datasets can be found in the relevant

references.

9



Reλ N l/η λ/η Forced or Decaying Reference Institution

37.1 128 31 11.8 D [45] Tokyo Tech

64.9 128 55 17.1 D [45] Tokyo Tech

97.1 256 100 20.9 D [45] Tokyo Tech

140 256 101 28.0 F [46] Georgia Tech

141.1 400 200 24.0 D [45] Tokyo Tech

222.7 640 494 29.3 D [47] Tokyo Tech

393.8 1536 1146 39.0 D Unpublis. Tokyo Tech

1131 4096 2137 66.5 F [39] Nagoya Univ

TABLE I. Characteristics of the (forced or decaying) homogeneous isotropic turbulence DNS

database. l is the integral length scale, λ the Taylor microscale and η the Kolmogorov length

scale.

IV. RESULTS

A. Morphology of the turbulent vortices

The turbulent velocity fields have been obtained at various scales by using the bandpass

filter with length scale, L, varying from 5η to up to 1300η depending on the dataset. From

these fields, the strained (enstrophy) and straining structures can be deduced using Eq. (10).

Figure 1 shows examples of the strained and straining structures for Reλ = 140 and 1131.

The length scales Ls and Lω are respectively 24η and 5η for Figs. 1a and 1c. These length

scales are Ls = 75η and Lω = 24η for Fig. 1b, and they are Ls = 750η and Lω = 150η

for Fig. 1d. These specific combinations of Ls and Lω are chosen based on the suggestions

of Leung et al. [34] which showed that most stretching imparted on strained structures was

coming from straining structures 3 to 5 times larger. The isosurfaces are thresholded at a

value of µ + 2σ, where µ is the mean and σ is the standard deviation. This threshold was

chosen following the work of Leung et al. [34] to focus on regions with intense vorticity or

strain rate. Despite the variation in the volume of these structures, it is observed that their

general morphology is not significantly modified by varying the threshold, as also observed

by Leung et al. [34]. Indeed other thresholds of µ+σ and µ+3σ yielded similar results (not

shown here for brevity). The enstrophy and straining structures are more space filling in
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the larger Reλ case, irrespective of their scales. This was assessed by computing the volume

fraction occupied by these structures at various Reynolds numbers. For example, when

comparing the enstrophy structures of Fig. 1a to 1c, they occupy respectively 2.97% and

10.4% for cases Reλ = 140 and Reλ = 1131. Similarly, the straining structures of Fig. 1a

for Reλ = 140 only occupy 4.3% of the volume compared to 24.64% for Reλ = 1131 shown

in Fig. 1c. Furthermore, the enstrophy structures are predominantly tube and blob-like

with large strain fields at their periphery, as in the Burgers vortex model. This is illustrated

in Fig. 2 where a single enstrophy structure has been isolated from Fig. 1c along with its

neighbouring straining structures.

40
0�

400
400

40
0�

400
400

40
0�

400
400

2�

2 ≈
123
202

(a) (b)

(c) (d)

FIG. 1. Iso-surfaces of enstrophy (red) and straining (green) structures with a threshold value of

µ + 2σ, where µ is the mean and σ is the rms. Panels (a) & (b) are for Reλ = 140 and (c) & (d)

are for Reλ = 1131. In (a) and (c) Ls = 24η and Lω = 5η, in (b) Ls = 75η and Lω = 24η and in

(d) Ls = 750η and Lω = 150η.

The shapefinders, P and F , for the strained and straining structures seen in Fig. 1 are
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(a) (b)

x
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x

y

FIG. 2. (a) Isolated single iso-surface of enstrophy (red) and dissipation (green) structures with a

threshold value of µ + 2σ extracted from the case Re = 1131. (b) The associated mid x-y plane

distribution.

plotted in Fig. 3. The results are shown as contours of joint probability density function

(pdf) of P and F for the strained structures and as scatter plots for the straining structures.

This particular choice is due to the small number of straining structures at larger scales

preventing the computation of a smooth pdf. For example, there are only 18 straining

structures observed in Fig. 1b for Ls = 75η and their P and F are shown as scatter plot in

Fig. 3b. The ranges of P and F observed in Fig. 3 suggest that the educed structures seen

in Fig. 1 are mostly blob-like (low P and low F) or tube-like (low P and medium or high

F) even for the largest Reλ and Lω = 150η considered here. More specifically, the straining

structures tend to have a blob-like aspect ratio for all length scales considered here, while

the small scale vortices with Lω = 5η present a tube-like morphology (see Figs. 3a and 3c).

However, as Lω increases, the enstrophy structures starts to show blob-like morphology as

observed by the shift in the position of the joint-pdf towards lower value of F (compare Fig.

3a to 3b, and Fig. 3c to 3d). Similar observations about the difference in the shapes of the

vortical and straining structures were also made in [34] using bandpass filters and in [49]

based on the fractal dimensions for the intense vortical and straining structures.

B. Energy and enstrophy transfer

The normalised energy transfer function, Π̂L→S
V,b = ΠL→S

V,b /max(ΠL→S
V,b ), is shown in Fig. 4

where it is plotted for three different Reynolds numbers Reλ = 97.1, 222.7 and 1131. For
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(a) (b)

(c) (d)

FIG. 3. Joint PDF of planarity, P, and filamentarity, F of the strained (or enstrophy) structures

seen in Fig. 1.

each case, a large scale, L, is picked first and the small scale S is varied to determine which

small scale receives the most energy from the structures of size L. This can be repeated

for various values of L to analyse if the range of scale interactions evolves across scales of

turbulence in a particular fashion or not.

FIG. 4. Normalised energy transfer function, Π̂L→S
V,b , for various cases.

It is observed that Π̂L→S
V,b peaks for values of S/L around 0.3 for all values of L. This
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indicates that structures at scale Lmostly transfer energy to structures having a size of about

∼ 0.3L. Furthermore, the normalising quantity, max(ΠL→S
V,b ), increases with decreasing L,

for the range of L studied here, and increases with increasing Reλ. As this analysis is

performed for various L, the results in Fig. 4 show that there exists a locality in the energy

transfer for the range of scales across the turbulence spectrum. This strongly supports the

energy cascade picture which portrays that the energy is transferred from one scale to its

neighbouring smaller scale. Furthermore, this result is observed to be insensitive for all the

Reynolds numbers considered here suggesting that the energy cascade picture is robust and

does not change with Reλ.

A similar analysis is performed for the enstrophy flux between two scales, L and S. The

normalised value of the enstrophy flux, F̂L→S
b = FL→S

b /max(FL→S
b ), is shown in Fig. 5

for the same cases considered for the energy transfer in Fig. 4. The behaviour of F̂L→S
b is

very similar to that for the energy transfer. The enstrophy of scale L is mostly transferred

to scales of about 0.3L for all L considered and max(FL→S
b ) has the same behaviour as

max(ΠL→S
V,b ) with variations of Reλ and L. This similar behaviour between F̂L→S

b and Π̂L→S
V,b

hints at a close relation between the energy and enstrophy transfers and the enstrophy still

cascades from large to small scales just like the energy [41].

FIG. 5. Normalised enstrophy flux, F̂L→S
b , for various cases.

To further quantify the locality of this energy and enstrophy flux, one can plot the value

of the ratio S/L yielding the highest energy or enstrophy transfer for various L and Reλ

considered. These ratios, denoted as (S/L)E
max

for the energy transfer and (S/L)Ω
max

for the

enstrophy flux, are shown in Fig 6 with the uncertainty associated with the location of the

peak. This uncertainty comes from the limited combination of the ratios (S/L) computed
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for this study. Indeed, to estimate (S/L)Ω
max

and (S/L)E
max

, first a large scale, L, is chosen

and then a finite number of small scales, S, are considered subsequently to compute the

energy/enstrophy transfer and to determine for which S the energy/enstrophy transfer is

maximum for the chosen L. From this set of ratios (S/L), (S/L)Ω
max

and (S/L)E
max

are

determined. Thus, the uncertainty of the maximum corresponds to the interval between the

two consecutive (S/L) bracketing the peaks seen in Figs. 4 and 5. This interval width is

shown as vertical bars in Fig. 6.

It is observed that for all cases, the values of (S/L)Ωmax and (S/L)Emax lie between 0.25

and 0.4. This provides strong support for the scale-by-scale energy or enstrophy cascade

throughout the range of scales of turbulence and more importantly, for all Reynolds numbers

considered. The results shown in Figs. 4 and 5 have also been compared for the decaying and

forced cases with Reλ of about 140 and no significant differences were observed (not shown)

implying that the forcing of the turbulence at sufficiently large scale does not influence the

energy or enstrophy flux through the scales. Furthermore, the similar behaviour of the

results for both large and small scales in the cases with Reλ = 140 and Reλ = 1131 suggests

that the forcing scheme does not influence the results unduly.

(a) (b)

FIG. 6. Ratio (a) (S/L)Emax and (b) (S/L)Ωmax yielding the maximum energy or enstrophy transfer

from eddies of a scale L to a scale S.

C. Vorticity - strain rate alignment

As noted by Eq. (13), the generation of enstrophy through vortex stretching mechanism

is dictated by the alignment between the vorticity vector and the principal strain rates.

The probability density function of | cos θ| between vorticity at 5η and the principal strain

rates at various Ls is shown in Fig. 7 for four Reynolds numbers. This alignment pdf is
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shown for both the α and β strain rates. The vorticity is observed to align preferentially

with the most extensional strain, α, when Ls > Lω and the alignment with the β strain

rate increases progressively as Ls/Lω → 1, as observed by Leung et al. [34] for Reλ = 141.

Statistics similar to unfiltered alignment characteristics reported by Ashurst et al. [24], ie.

alignment with the β strain rate, are observed for Ls ≈ Lω. This statistics with unfiltered

field computed for the case Reλ = 1131 is shown for comparison in the frame for Ls = 5η of

Fig. 7 using gray lines.

FIG. 7. Pdf of alignment between the vorticity filtered at scale Lω = 5η and the principal directions

of the strain filtered at scales Ls. Solid line α and dashed line β. The gray lines are for the case

Reλ = 1131 computed using unfiltered fields.

One can also quantify the size of larger structures primarily responsible for stretching a

vortex of size Lω by studying the probability, P , of the alignment with the α strain rate.

As discussed in Leung et al. [34], this can be obtained by simply integrating the results in

Fig. 7 for ξ1 ≤ | cos θα| ≤ 1 and the variation of this probability with L = Ls/Lω is shown

in Fig. 8, with ξ1 = 0.99, for the range of Reynolds numbers in Table I. Figures 8a and

8b show this quantity respectively for Lω = 5η and Lω = 45η with Ls ranging from 5η

to 1300η depending on the dataset under analysis. (The additional case of Lω = 150η is

included for Reλ = 1131 in Fig. 8a). Evidently, for all cases considered, the probability

peaks for 3 ≤ L ≤ 5, implying that the vortical structures of scale Lω are stretched mostly
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by structures that are about 3 or 5 times larger, as noted by Leung et al. [34]. Although the

results shown in Fig. 8 are for ξ1 = 0.99, they are observed to be insensitive to the choice

of the ξ1 value. These results support the hypothesis that the enstrophy structures are

predominantly stretched by the extensional strain from larger eddies, corroborating the idea

that the most effective vortex stretching is incremental in scale-space. More importantly,

it is seen that this observation holds for all values of Reλ investigated here and even for

relatively large enstrophy structures at large Re (see curve corresponding to Reλ = 1131

with Lω = 150η in Fig. 8a). This observation is also consistent with the ratios of scales for

the maximum energy or enstrophy transfer, (S/L)Emax or (S/L)Ωmax, shown in Fig 6.

(a) (b)

FIG. 8. Variation of probability of near perfect alignment of ω with α versus L with (a) Lω = 5η

and (b) Lω = 45η.

The value of L associated with the peak probability for near perfect alignment between ω

and α, noted as L∗, is plotted against Reλ in Fig. 9 where various values of Lω, ranging from

5 to 100η, are considered for the strained structures. It is clear that this length scale ratio

is between 3 and 5 and is more or less independent of Reλ, at least for the range considered

in this study and independent of the choice of Lω. This provides further evidence of a scale-

by-scale energy transfer. The results for larger Lω, for example 45η, do not extend to lower

Reλ because the larger straining scales required for the analysis become larger than the size

of the computation domain. Furthermore, in light grayscale, the range of ratios (L/S)E
max

for each Reλ case observed in Fig. 6 is also plotted. This ratio also lies in the same range as

L∗ which clearly shows that all these phenomena related to the energy cascade picture are

local in scale and more or less independent of the Reynolds number. This provides support

and evidence for the universality of the energy cascade picture, even at modest values of

Reλ.
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FIG. 9. Ratio L∗ = Ls/Lω yielding the highest probability for perfect alignment of ω with the

α strain rate (lines). The shaded region shows the minimum and maximum values of (L/S)Emax

yielding the highest energy transfer for the associated Reλ.

Furthermore, the importance of the alignment of vorticity with the α-strain, and thus

the actual vortex stretching, for the enstrophy production can be highlighted by estimating

the contribution of each principal strain to the total enstrophy production. Indeed, the

contributions of α, β and γ to the volume averaged enstrophy production 〈ψ〉 = 〈ωiSijωj〉 =
〈ψα〉 + 〈ψβ〉 + 〈ψγ〉 is known to be in the ratio of 〈ψγ〉 : 〈ψβ〉 : 〈ψα〉 = −1 : 1.41 : 2.06. For

a vortex of scale Lω, these contributions from strain rates of various sizes of eddies can be

estimated using

〈ψLω〉 = |ωLω |2
∫

∞

1

(
αL cos2 θα + βL cos2 θβ + γL cos2 θγ

)
dL

= 〈ψLω

α 〉+ 〈ψLω

β 〉+ 〈ψLω

γ 〉 (17)

The ratio 〈ψLω

γ 〉 : 〈ψLω

β 〉 : 〈ψLω

α 〉 = −1 : 0.46 : 3.44 is observed for Lω = 5η and Reλ = 140.

If one considers Lω = 24η then this ratio becomes −1 : 0.49 : 4.93. For Reλ = 1131, this

ratio is −1 : 0.32 : 2.51 when Lω = 5η and −1 : 0.36 : 2.67 when Lω = 150η. The α strain

rate thus clearly dominates over the β strain for all the filtered fields. Hence, the main

mechanism of enstrophy production is through the axial vortex stretching as suggested by

the original energy cascade picture [1, 19, 22].
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V. CONCLUSION

In summary, the validity of the Richardson/Kolmogorov energy cascade picture has been

investigated in real space using DNS data for Reλ varying from about 37 to 1131. Through

the detailed study of the energy and enstrophy fluxes, it has been confirmed that there

is a scale-locality in the energy and enstrophy transfer across the cascade. In particular,

it was observed that turbulent structures of a scale L mostly transfer energy/enstrophy

to smaller structures of a size ∼ 0.3L. Furthermore, as it is generally thought that the

energy/enstrophy transfer is made through vortex stretching, this mechanism was studied by

considering the alignment statistics between vorticity at a scale Lω and straining structure

at a scale Ls. It was confirmed that vortical structures of a length scale Lω are mostly

stretched by structures 3 to 5 times larger than Lω for the range of Reλ considered. This

was noted by Leung et al. [34] for Reλ = 141, but it is seen here that this results extend to

Reλ as high as 1131 and as low as 37. In particular, the statistics of near perfect alignment

between the filtered vorticity and filtered strain rate fields shows a clear maximum for a

ratio of Ls/Lω between 3 and 5. Considering the similarity between all these findings, a

close link between the vortex stretching mechanism, energy transfer and enstrophy flux can

be summarised. At a given scale Lω, vortical structures are mostly stretched by structures

of a scale of about 3Lω. This gives rise to a transfer of energy from this large scale ∼ 3Lω to

this scale Lω. Subsequently, at this scale Lω, enstrophy is being generated locally but this

enstrophy is directly transferred to a smaller scale of about 0.3Lω through vortex stretching

at smaller scale. And this process continues down the energy cascade until the Kolmogorov

and dissipative scales. Furthermore, the statistics found are qualitatively the same for all

the Reynolds numbers investigated here and choice of Lω. This suggests the existence of

a similar vortex stretching mechanism across a wide range of values of Reλ and turbulence

scales and provides a strong support for the classical picture of the energy cascade and

its locality. The morphology of these vortical structures has also been studied using the

Minkowski functionals and were characterised as being tube-like for small scales, supporting

the vortex-worm structures proposed by Burgers [21]. Thus, it is quite clear that the classical

mechanism for the energy cascade prevails even at Reλ as low as about 40 or as high as 1131.

Future work will be devoted to analysing the temporal aspect of the energy cascade.

Indeed, only instantaneous snapshots were considered here while the temporal decay of the
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energy cascade could play an important role. Furthermore, the spatial locality of the energy

and enstrophy transfer could also be examined in future studies.
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