23 research outputs found

    Strong linkages between depth, longevity and demographic stability across marine sessile species

    Get PDF
    Understanding the role of the environment in shaping the evolution of life histories remains a major challenge in ecology and evolution. We synthesize longevity patterns of marine sessile species and find strong positive relationships between depth and maximum lifespan across multiple sessile marine taxa, including corals, bivalves, sponges and macroalgae. Using long-term demographic data on marine sessile and terrestrial plant species, we show that extreme longevity leads to strongly dampened population dynamics. We also used detailed analyses of Mediterranean red coral, with a maximum lifespan of 532 years, to explore the life-history patterns of long-lived taxa and the vulnerability to external mortality sources that these characteristics can create. Depth-related environmental gradients-including light, food availability, temperature and disturbance intensity-drive highly predictable distributions of life histories that, in turn, have predictable ecological consequences for the dynamics of natural populations. Ā© 2018 The Author(s) Published by the Royal Society. All rights reserved.Funding. This study was partially funded by the Spanish Ministry of Economy and Innovation Biorock project (CTM2009-08045), the Smart project (CGL2012-32194), the TOTAL Foundation Perfect project and the European Unionā€™s Horizon 2020 research and innovation programme under grant agreement no 689518 (MERCES). This output reflects only the authorsā€™ view and the European Union cannot be held responsible for any use that may be made of the information contained therein. I.M.-S. was supported by a FPI grant (BES-2013-066150), C.L. by a Ramon y Cajal (RyC-2011- 08134) and J.B.L. by a postdoctoral grant (SFRH/BPD/74400/2010) from the Portuguese Foundation for Science and Technology. Support for D.F.D. came from National Science Foundation awards 1340024 and 1242355. I.M.-S., C.L., J.B.L. and J.G. are part of the Marine Conservation research group (2014 SGR 1297) from the Generalitat de Catalunya. Acknowledgements. We thank K. Kaplan, M. Pages, A. Griffith and one anonymous reviewer for their valuable comments on early versions of this manuscript

    Causes and consequences of marine mammal population declines in southwest Alaska: a food-web perspective

    No full text
    Populations of sea otters, seals and sea lions have collapsed across much of southwest Alaska over the past several decades. The sea otter decline set off a trophic cascade in which the coastal marine ecosystem underwent a phase shift from kelp forests to deforested sea urchin barrens. This interaction in turn affected the distribution, abundance and productivity of numerous other species. Ecological consequences of the pinniped declines are largely unknown. Increased predation by transient (marine mammal-eating) killer whales probably caused the sea otter declines and may have caused the pinniped declines as well. Springer et al. proposed that killer whales, which purportedly fed extensively on great whales, expanded their diets to include a higher percentage of sea otters and pinnipeds following a sharp reduction in great whale numbers from post World War II industrial whaling. Critics of this hypothesis claim that great whales are not now and probably never were an important nutritional resource for killer whales. We used demographic/energetic analyses to evaluate whether or not a predatorā€“prey system involving killer whales and the smaller marine mammals would be sustainable without some nutritional contribution from the great whales. Our results indicate that while such a system is possible, it could only exist under a narrow range of extreme conditions and is therefore highly unlikely

    Interactive life-history traits predict sensitivity of plants and animals to temporal autocorrelation

    Full text link
    Temporal autocorrelation in demographic processes is an important aspect of population dynamics, but a comprehensive examination of its effects on different life-history strategies is lacking. We use matrix population models from 454 plant and animal populations to simulate stochastic population growth rates (log Ī»s) under different temporal autocorrelations in demographic rates, using simulated and observed covariation among rates. We then test for differences in sensitivities, or changes of log Ī»s to changes in autocorrelation among two major axes of life-history strategies, obtained from phylogenetically informed principal component analysis: the fast-slow and reproductive-strategy continua. Fast life histories exhibit highest sensitivities to simulated autocorrelation in demographic rates across reproductive strategies. Slow life histories are less sensitive to temporal autocorrelation, but their sensitivities increase among highly iteroparous species. We provide cross-taxonomic evidence that changes in the autocorrelation of environmental variation may affect a wide range of species, depending on complex interactions of life-history strategies

    Effects of entomopathogenic fungus Metarhizium anisopliae on non-target ants associated with Odontotermes spp. (Isoptera: Termitidae) termite mounds in Kenya

    No full text
    doi:10.1017/S1742758416000114Termites are an important component of savannah ecosystems throughout Africa. Despite their importance in the ecosystem, they can be serious pests of structures, houses, rangelands, tropical forestry, and agriculture. For many decades, chemical insecticides have remained popular for termite management worldwide. However, with the growing environmental concerns over pesticides, biological control using entomopathogenic fungi such as Metarhizium anisopliae (Metschnikoff) Sorokin has become an often-considered alternative. Metarhizium anisopliaeis an ubiquitous, naturally occurring pathogen, which has been reported infecting over 200 insect species; therefore, there is concern that use of M. anisopliae may affect non-target organisms. The effects of M. anisopliae isolate ICIPE 30 were experimentally tested on the ants which associate with Odontotermes spp. termite mounds. Laboratory bioassays were carried out to assess the effects of direct exposure to M. anisopliae on Crematogaster mimosae and Camponotus spp. In addition, ant diversity was monitored over 18 months from termite mounds treated with M. anisopliae in situ near the Mpala Research Centre in Laikipia District of central Kenya. Results obtained revealed no effects of direct exposure to M. anisopliae isolate ICIPE 30 on the mortality of C. mimosae (F1 = 7.29, P = 0.0072) or Camponotus spp. (F1 = 13.01, P = 0.0004) in the laboratory. No significant difference in Shannon indices of ant diversity from treated and untreated mounds (F1 = 0.016, P = 0.8989) was found. It is evident that M. anisopliae has no negative effects on ants that are associated with Odontotermes spp. termite

    Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism.

    No full text
    Understanding cooperation is a central challenge in biology, because natural selectionshouldfavor "free-loaders" that reap benefits without reciprocating. For interspecific cooperation (mutualism), most approaches to this paradox focus on costs and benefits of individual partners and the strategies mutualists use to associate with beneficial partners. However, natural selection acts on lifetime fitness, and most mutualists, particularly longer-lived species interacting with shorter-lived partners (e.g., corals and zooxanthellae, tropical trees and mycorrhizae) interact with multiple partner species throughout ontogeny. Determining how multiple partnerships might interactively affect lifetime fitness is a crucial unexplored link in understanding the evolution and maintenance of cooperation. The tropical tree Acacia drepanolobium associates with four symbiotic ant species whose short-term individual effects range from mutualistic to parasitic. Using a long-term dataset, we show that tree fitness is enhanced by partnering sequentially with sets of different ant symbionts over the ontogeny of a tree. These sets include a "sterilization parasite" that prevents reproduction and another that reduces tree survivorship. Trees associating with partner sets that include these "parasites" enhance lifetime fitness by trading off survivorship and fecundity at different life stages. Our results demonstrate the importance of evaluating mutualism within a community context and suggest that lifespan inequalities among mutualists may help cooperation persist in the face of exploitation

    Herbivory: effects on plant abundance, distribution and population growth

    No full text
    Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether particular plant life-history types are predictably more vulnerable to herbivory at the population level, (iii) whether the strength of plantā€“consumer interactions shifts predictably across environmental gradients and (iv) the role of consumers in influencing plant distributional limits. Existing studies demonstrate numerous examples of consumers limiting local plant abundance and distribution. We found larger effects of consumers on grassland than woodland forbs, stronger effects of herbivory in areas with high versus low disturbance, but no systematic or unambiguous differences in the impact of consumers based on plant life-history or herbivore feeding mode. However, our ability to evaluate these and other patterns is limited by the small (but growing) number of studies in this area. As an impetus for further study, we review strengths and challenges of population-level studies, such as interpreting net impacts of consumers in the presence of density dependence and seed bank dynamics
    corecore