4,920 research outputs found

    Multiple-dose design and bias-reducing methods for limiting dilution assays

    Get PDF
    This paper gives an overview of several (mostly recent) statistical contributions to the theory of Limiting and Serial Dilution Assays (LDA's, SDA's). A simple and useful method is presented for the setup of a design for an LDA or an SDA. This method is based on several user-supplied design parameters, consisting in the researcher's advance information and other parameters inherent to the particular problem. The commonly used Maximum Likelihood (ML) and Minimum Chi-square methods for the estimation of the unknown parameter in an LDA or an SDA are described and compared to several bias-reducing estimation methods, e.g. jackknife and bootstrap versions of the ML method. One particular jackknife version is recommended

    Anticoagulant activity of a synthetic heparinoid in relation to molecular weight and N-sulfate content

    Get PDF
    Addition of chlorosulfonyl isocyanate to C=C bonds in cis-1,4-polyisoprene and reaction of the adduct with NaOH resulted in the formation of a water-soluble polyelectrolyte with N-sulfate and carboxylate groups. The polyelectrolyte showed anticoagulant activity and it was found, just as with heparin, that the activity was related to molecular weight and N-sulfate content

    The Contribution of Katherine Luther to the Homelife and Ministry of her Husband Martin

    Full text link
    Katherine von Bora Luther does not command a great deal of space in any Church History textbook. What is known about her life is in connection with that of her husband and Reformer Martin Luther. Katherine Luther stands in the shadow of her great husband Martin but it was possible to catch a glimpse of her character and contribution to the homelife and ministry of her husband Martin

    Investigations on vinylene carbonate. V. Immobilization of alkaline phosphatase onto LDPE films cografted with vinylene carbonate and N-vinyl-N-methylacetamide

    Get PDF
    Low-density polyethylene (LDPE) films cografted with vinylene carbonate (VCA) and N-vinyl-N-methylacetamide (VIMA) were studied as a matrix for the immobilization of the enzyme alkaline phosphatase (ALP) either by direct fixation or by inserting spacers. When water-soluble alkyldiamines such as diaminoethylene, diaminobutane, diethylenetriamine, and diaminohexane were used as spacers between the matrix and the enzyme, the surface concentration (SC) of the active ALP coupled on the matrix was increased, whereas the effect of the spacer on the SC was dependent on the length of the spacer. Bovine serum albumin (BSA) was preimmobilized onto the LDPE films to provide a better simulation of the biological environment for the enzyme, and the SC of ALP on the matrix was significantly increased by coupling ALP onto the BSA preimmobilized surfaces. Compared to native ALP, some physicochemical properties of ALP could be improved by the covalent immobilization

    Iron(III)-chelating resins X. Iron detoxification of human plasma with iron(III)-chelating resins

    Get PDF
    Iron detoxification of human blood plasma was studied with resins containing desferrioxamine B (DFO) or 3-hydroxy-2-methyl-4(1H)-pyridinone (HMP) as iron(III)-chelating groups. The behaviour of four resins was investigated: DFO-Sepharose, HMP-Sepharose and crosslinked copolymers of 1-(ß-acrylamidoethyl)-3-hydroxy-2-methyl-4(1H)-pyridinone (AHMP) with 2-hydroxyethyl methacrylate (HEMA) and of AHMP with N,N-dimethylacrylamide (DMAA). The efficiency of iron detoxification of plasma of the resins was mainly dependent on the affinity of the ligands and the hydrophilicity of the resins. The results of a stability study in phosphate-buffered saline at a physiological pH indicated that AHMP-DMAA was the most stable resin, whereas the Sepharose gels had a relatively lower stability. Experiments with the AHMP-DMAA resin showed that the resin was able to remove iron from plasma with different iron contents, and from plasma poisoned with FeCl3, iron(III) citrate or transferrin. A rapid removal from free serum iron was observed, whereas iron from transferrin was removed slowly afterwards. Only the overload iron was removed since in all cases the normal serum iron level of ca. 1 ppm was obtained

    Iron(III) chelating resins-IV. Crosslinked copolymer beads of 1-(B-acrylamidoethyl)-3-hydroxy-2-methyl-4(1H)-pyridinone (AHMP) with 2-hydroxyethyl methacrylate (HEMA)

    Get PDF
    Iron(III) chelating beads have been synthesized by copolymerization of 1-(ß-acrylamidoethyl)-3-hydroxy-2-methyl-4(IH)-pyridinone (AHMP) with 2-hydroxyethyl methacrylate (HEMA), and ethyleneglycol dimethacrylate (EGDMA) as the crosslinking agent. The synthesis of the AHMP-HEMA beads was performed by suspension polymerization of AHMP, HEMA and EGDMA in benzyl alchol¿20% aqueous NaCl solution using 2,2¿-azobisisobutyronitrile (AIBN) as the initiator and polyvinylalcohol (40¿88) as a suspending agent.\ud \ud The crosslinked copolymer beads were characterized by IR, and the AHMP content was determined by elemental analysis. The AHMP-HEMA beads were not too hydrophilic, and the copolymers absorbed at equilibrium only 40¿50% water. It was found that the copolymer beads were very stable at 25°, but some degradation was observed at 121°.\ud \ud The AHMP-HEMA copolymers were able to chelate iron(III) and the chelation was dependent on the conditions such as pH and temperature. However, the capacities towards iron(III) chelation were always found to be much lower than the calculated values. The influence of the polymeric matrix on the iron(III) chelating ability was studied with iron(III) chelating resins containing various polymeric matrices. It was found that the iron(III) chelating efficiencies of the resins were strongly affected by their hydrophilicities. The low chelating efficiency of the AHMP-HEMA beads (0¿40%) is probably due to their poor swelling in water

    Mechanical properties and chemical stability of pivalolactone-based poly(ether ester)s

    Get PDF
    The processing, mechanical and chemical properties of poly(ether ester)s, prepared from pivalolactone (PVL), 1,4-butanediol (4G) and dimethyl terephthalate (DMT), were studied. The poly(ether ester)s could easily be processed by injection moulding, owing to their favourable rheological and thermal properties. The tensile response of a poly(ether ester) with a butylene terephthalate (4GT) content of 72 mol%, which exhibited the phenomena of necking and strain-hardening, was related to the morphology of these copolymers. The influence of the short 4G-PVL segments was reflected in a high Young's modulus and yield stress, and resulted in a tough behaviour for the poly(ether ester), with an ultimate elongation of 500%. The poly(ether ester)s were stable towards treatment at room temperature with water or weakly acidic or alkaline solutions. Conditioning at 90°C in water for 264 h resulted in a water uptake of 1 wt%, whereas the rate of hydrolysis was 0.0003 (expressed in An rel h-1) for the poly(ether ester) with a 4GT content of 72 mol%. Although a decay in the mechanical properties for the PVL-based poly(ether ester) after exposure to water at 90°C was observed, these materials were assumed to have a higher hydrolytical stability than other poly(ether ester)
    corecore