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ABSTRACT

Ten different estimators of the parameter in a limiting or
serial dilution assay are compared. Eight of them are constructed
to reduce the bias of the commonly used maximum likelihood
estimator. Extensive Monte Carlo experiments using various designs,
suggest that a particular jackknife version of the maximum
likelihood estimator is preferred, provided that the design is not
too small.

1. INTRODUCTION

Limiting and Serisl Dilution Assays (LDA and SDA) are widely
used in many areas, including public hygiene, bacteriology, biology
and immunology; see Taswell (198~). In general these assays are
primarily intended to estimate the relative frequency of a well-
defined cell in a population of cells or the average number of
organisms per unit volume of solution. In both LDA and SDA this
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parameter is commonly estimated by using the "single-hit Poisson
model" with quantal data yielded by samples taken from different
dilutions. The assumptions underlying this model are well-known
(see Finney (19~8), Taswell (1981)) and will be described briefly,
using the terminolology of LDA. A test preparation contains
numerous cells of which an unknown proportion ~ has a certain
property, for example immuno-competency. From this test prepara-
tion, m different dilutions are prepared. Then, from dilution j, n.Jreplicate cultures are taken. The number of cells in the k-th
replicate culture of dilution j is a Poisson distributed variable
with mean xj. A fraction yr of these cells has the intended
property. A further assumption is that a positive response is ob-
tained for a replicate culture, if and only if at least one cell of
the specific type is present.

Statisticians can contribute to the execution of a LDA or a
SDA in at least two ways. They can help the experimenter to con-
Struct an experimental design which will take advantage oF existing
a priori information. This hopefully precludes experimentation
yielding useless data, and it enables adjusting the precision oF an
estimator. Furthermore they can advise on the statistical tech-
niques to be used. In many applications of dilution analysis, the
assays are very expensive and time consuming, while in some cir-
cumstances they are not repeatable either. In these cases it is of
vital interest to carefully chose an experimental design snd a
statistical estimator minimizing bias and standard error. Recent
research has been done on design problems (Loyer (1981), Taswell
(1987) and Strijbosch et al. (198~)), and Monte Carlo studies have
been made on the choice of the statistical procedure to be used
(Salama et al. (1978), Loyer (1981), Taswell (1981), Strijbosch et
al. (1987) and Dces et al. (1988)}. The results of these Monte
Carlo studies cannot be compared properly because of the absence of
generally accepted design methods: most authors used different ex-
perimental designs, when generating the simulation results. It is
obvious that the statistical properties of the possible estimators
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are dependent on the design used. If these properties do not hold
over other possible designs it could easily occur, that one author
f'inds that estimator 1 is better than estimator 2 while another
author finds conflicting results.

This paper is organized as follows. Section 2 describes the
experimental design, which has been used to compare different
estimators. Section 3 discusses ten different estimators for the
parameter in dilution series. The last two Sections are devoted to
the Monte Carlo experiments and the results, respectively.

2. EXPERIMENTAL DFSIGN

It is a very important issue, when comparing statistical es-
timators, to use a design which can be considered as a reference
and a frame. The design method proposed by Strijbosch et al. (198~)
seems to be a good candidate for use in general dilution assays and
in Monte Carlo comparisons. First some notation will be introduced.
Let the number of groups of replicate cultures be denoted by m, the
(mean) number of cells tested in a replicate culture of group j by
xj, and the number of replicate cultures for group j by nj,
j-1,...,m. Fucthermore let ~ denote the unknown frequency.

it is convenient to split thc total design problem into two
parts. Firstly, the design parameters m, and xl,...,xm are
determined; secondly, the numbers of replicate cultures nl,...,nm
are chosen such that the expected bias and the expected standard
error of an estimator are within certain bounds. The efficacy of
Strijbosch et al. (1987)'s method for determining the design
parameters m and xl,...,xm can be explained as follows. A research-
er setting up a dilution assay, will in general have some prior
information about the value of p. It is natural to think of a lower
bound ~1 and an upper bound p~2 for ~. He wants to plan his assay
such that not too many fractions of negatively responding cultures
are too close to either zero or one. There must be enough dilutions
which yield fractions of negatively responding cultures, somewhere
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ín the middle between zero and one. This must be true for every
value of ~ which could be the true value according to the prior
information of the experimenter, that is, for every 9~ satisfying ~1
~S~~p2. We must be more specific in order to deduct design formulae
from these general set-up considerations. If only fractions between
certain values P1 and PZ are called sufficiently informative and if
we want to have (on the average) d fractions between these values
for each possible ~ in the range [~1,p2], then the design
parameters m and xl,...,xm can be chosen according the formulae (i)
through (iv) in Strijbosch et al. (198~). The advantages of this
design method are: it incorporates researcher's criteria, it has
suitable properties, and it can be easily used in Monte Carlo ex-
periments aimed at a meaningful comparison of statistical
estimators.

The most interesting statistical estimators for which com-
parisons are made in the various studies mentioned before, will be
compared in this study, namely the minimum chi-square method (MC),
the maximum likelihood method (ML) (see Taswell (1981)), three
jackknife versions (Jr,Jc, and Je) of the ML estimator (see Does et
al. (1988)), two methods (S1 and S2) invented by Salama et al.
(1978), and three bootstrap versions (Br,Bc, and Be) of the ML
estimator. In the next Section these estimators will be described
briefly.

~. STATISTICAL METifODS

3.1 Notation

In Section 2 we introduced the following notation: m
the number of groups of replicate cultures, xj equals the
number of cells tested in a replicate culture of group j,
the number of replicate cultures
denotes the unknown frequency.

equals
(mean)
nj equals

for group j, j-1,...,m, and y~
Then the data of the biometrical

model can be represented as follows :
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{Yjk} j-1,....m: k-1....,n.. (1)J
where Yjk are independent Bernoulli distributed variables, with
PlYjk- 0) - 1- P(Yjk- 1) - exp(-~oxj). A negative respons for a
replicate culture is thus denoted by zero.

~ The Maximum Likelihood Method

From (1) it follows that the logarithm of the likelihood func-
tion L(p~) is given by

m n.
logL(~) - Fj-1 fk-1 {-(1-Yjk)pxj . yjklog(1-exp(-~xj))), (2)

The ML estimator (pML) is the value of ~ that maximizes (2). As is
pointed out in Does et al. (1988), this estimator must be slightly
adapted in order to obtain an estimator with finite bias. If all
Yjk equal 1(this event occurs with a small but positive probabil-
ity), then the ML estimate equals infinity and hence E(g~ML)-m, thus
leading to an infinite, rather than an asymptotically negligible
bias. Does et al. (1988) proposed the following modification: when-
ever Yjk- 1 for j-1,...,m, k-1,...,nj replace one Yjk, for example
the most suitable such as Yi1, by 0. It is shown that this simple
modification suffices to reduce the bias from infinity to the
desired order. This adaptation of y~ML will be assumed throughout
the paper.

Sufficiency implies that the relevant observations from a LDA
consist of the independent binomial random variables R, defined by
Rj - ik-1 (1-Yjk). The vector ( R1,...,Rm) will be denoted by R.
Furthermore let nj-Rj be denoted by Qj and ( Q1,.,,,Qm) by Q, -

3.3 Three Jackknife Versions of the ML Estimator

n. JJ

In general the jackknife is defined as follows. Suppose a
parameter O is estimated on the basis of the stochastic variables
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X1,...,XN. Consider an estimate TN-TN(X1,...,XN). Then the i-th
jackknifed pseudo-value is defined as

J - NT -(N-1)'f (X ,X1Ni N N-1 1.... i-1.Xi}1.....XN). i-1....,N. (3)
The jackknife estimator TN deFined by

J -1 N J
TN - N Ei-1 TNí (4)

reduces the bias in many cases (see EFron (1982)). In our case, the
pseudo-values in (3) can be obtained in three different ways. When
nj-n the biometrical model (1) is a matrix with columns that are
independent, identically distributed (iid) random vectors. As jack-
knife estimates are in general determined from iid variables, the
natural way to jackknife is to drop one column from (1) at a time
(see Strijbosch et al. (198~), and Kleijnen et al. (1987)); this
yields the jackknife estimate pJc. The two other versions are non-
iid cases and are obtained by deleting one row at a time (yielding

~Jr) or one element at a time (yielding ~Je), respectively (see
Does et al. (1988)). Note that these last two estimates can be ob-
t.ained from R.

3.4 Three Bootstrap Versions of the M[. Estimator

Analogous to the three jackknife versions there sre three
bootstrap versions 9'Bc' ~Br' ~d ~Be' Suppose again that TN -
TN(X1,...,XN) i s an estimate of the parameter O. The ordinary
bootstrap approach consists of drawing M random samples
(X1' "" XN)i-1,...,M of size N from X1,...,XN (see Efron (1982)).
Such a sample is obtained by computer generated random sampling
with replacement. Although there exist more elaborated bootstrap
methods (see Davison et al. (1986)) the simple bootstrap will be
used. The i-th bootstrapped pseudo-value is defined as

Ni - TN(Xi,....XN). i-1,...,M.

The bootstrap estimator TN defined by
(5)
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-1 M ~A
N - M Li-1 ,INi (6)

could potentially reduce the bias when estimating the parameter in
LDA. As discussed in the previous subsection (g3.3), there are
three different ways to define a set (X1,...,XN) from the biometri-
cal model (1), thus resulting in the bootstrap estimators p,~Bc Brand grBe. As before the c-variant represents the iid-case, and is
only applicable when all n.-n, j-1,...,m.J

3.5 Salama et al. (19~8) Bias-ReducinA Methods

Using Taylor expansions and implicit function theorems, Salama
et al. (1978) showed the existence of functions H(Q,9~ML) such that
the estimator 9~S defined by

~S - ~ML - H(Q'~ML)
satisfies

E(~S) - 9~ t L.m ~ (n-Z).~-1 j

thus removing the first order bias

)nj

tives for the function H are given (yielding the estimators ~S1 and
~S2):

~2~
G1(Q.~ML) - 2 ïjmi( 2L

~ Qj
and

G2(Q'~ML) -
1
2

L m (
~-1

2n
`~ ~ML

~ Qj

(7)

(8)
term. The following two alterna-

e-~MLxj (1-e-~MLxI) (9)

n ~

-~MLx ' -3rMLx
)u nj e ~ (1-e j). (10)

The second order derivatives in the right-hand side of ( 10) are
evaluated at u, defined by u- E(Q). Unfortunately the formula

- - ~2~
given by Salama et al. (1978) for ~ML shows typing errors. The~ Q2

J

2

correct formula is :
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F? r -9~ x .
-~ I F.m Q.e ML i F?(x.4 2F.eD3 ll ~-t ~ ~ ~ ~

- 2 F.L e ~MLx.IDZ .

3

where Fi and D are defined by, respectively,

Fi - Fi(~ML) - xi ~ (1-e-~MLxi

and

)

-~MLxi)1

(12)

(13)D- D(Q.PML) - ïjml Q, e-~MLxj

F~
Salama et al. (1978) used a special modification of the ML es-
timator, in case all Qj equal nj, j-1,...,m. That modification is
essentially the same as described earlier in the subsection of the
ML method (g3.2).

3.6 The Minimum Chi-Square Method

The Minimum Chi-Square or MC estimator (9óMC) is determined as
the value of p that minimizes

x2(~) - F.m (R~
- n~ exp(-~x~))2

~-1 (nj exp(-pxj)(1-exp(-~xj)) '

Since the expected value of the MC estimator is
been adapted in the same manner as ~ML has; see

4. MONTE CARLO EXPERIMENT'S

(14)

infinite, 9~MC has

~3.2.

An extended version of the simulation program described in
Does et al. (1988) has been used for our Monte Carlo experiments.
The modification consisted of the addition of the three bootstrap
estimators, the two methods of Salama et al. (19~8), and the MC
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estimator. Much care has been taken to test the program. For ex-
ample, the results of Salama et al. (1978) which have been based on
the exact distributions of pSl and ~S2 could be reproduced quíte
satisfactorily in the simulations. In this paper the statistical
estimators are compared for two different designs with three and
two different values, respectively, for the number of replicates
(n). Thus, using the design method described in Section 2, the fol-
lowing values of pl,y,2,pl,p2 ar.d d have been chosen :~1-0.001,
~2-0.01, P1-0.15, P2-0.~0, d-2 (yielding m-4) and d-3 (yielding
m-7). For the case d-2 the simulation program has been executed
with n-6, 12 and 18 and in the case d-3, with n-6 and 12.
Simulation results have been obtained for 19 equidistant values of
p within the interval [p1,~2]. The number of generated samples for
each combination oF p1,~2,p1,p2,d,n and g~ was 1,000. The number of
bootstrap samples (M) was 100.

The simulation program has been written in PASCAL and uses the
NAG (Fortran) subroutines G05DZF and G05DYF for the generation of
the Bernoulli variables {Yjk} and the bootstrap samples,
respectively. The structure of the program will be described
briefly for the case d-2. For each of the 19 values of ~, a matrix
{Yjk}. j-1....,4; k-1,...,18 is generated 1,000 times. These num-
bers are used twice : one time for n-18 and one time for either n-6
or n-12. This concession has been made in order to curtail the re-
quired CPU-time. Depending on the value of n, the numbers rj are
determined by rj- n-~ yjk, where k-1,...,6 for n-6, k-7,...,18 for
n-12 and k-1,...,18 for n-18. Thus 1,000 datasets (x r,n),j' jj-1,...,4 result for each combination of 9~ and n. For each dataset
the program calculates, if possible, the weighted-mean estimate ~0
(see Taswell (1981)). When all rj-0 or n, this estimate cannot be
determined. In that case 9~0-(~l.go2)~2 has been taken. p0 served as
an initial estimate for the iterative determination of 9~ .~ML MLserved as an initial estimate for the determination of g~ , theMCjackknife, and the bootstrap pseudo-estimates. Comparison of the
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statistical estimators has been based on the mean relative bias(MRB) and the coefficient of variation (CV), defined as follows :
MRB - ~-1 ~t-ooo (~t - ~)li,ooo (15)

and

cv - ~-1~ F~-ooo (~t - ~)2ll.000 }112. (16j
The simulations used 59 hours of CPU-time on a VAX 8~00 computer.

5. RESULTS AND CONCLUSIONS

The uncorrected ML estimator exhibits a positive bias.
Theoretically this is due to the fact that there is a positive
probability that all dilutions will produce growth so that the ML
estimate becomes infinite. In practice, when m and nj,j-1,...,m are
large enough, this situation will not occur, and Monte Carlo
simulations reveal the positive bias in that case. Resampling plans
such as the jackknife and the bootstrap are designed to reduce the
bias (see Section 3). The Monte Carlo results in Strijbosch et al.
(~987) showed that jackknifing in LDA reduces both the bias and the
mean squared error of the estimator. Does et al. (1988) explained
that there are three different ways of constructing a jackknife es-
timator in dilution analysis. It is made plausible that all three
jackknife estimators reduce the bias by eliminating the first order
bias term, and Monte Carlo simulations showed the relative
properties of these estimators with respect to the ML estimator for
various designs. The three bootstrap versions of the ML estimator
can be obtained in a similar way. The two bias-reducing methods in
Salama et al. (1978) eliminate the first-order bias term in a way
different from jackknifing and bootstrapping, and therefore it is
interesting to compare these estimators. From former results (see
Stríjbosch et sl. (198~) and Fazekas de St. Groth (1982)) it is
clear that the MC estimator is not attractive. Nevertheless this



method is also considered in the Monte Carlo comparisons, espe-
cially because of the curious and inconsistent behaviour of its
bias and mean squared error.

In the Figures la through 5b not all methods are included, in
order to prevent confusion resulting from too many curves. For each
category only the "best" one is shown. Does et al. (1988) concluded
that, amang the three jackknife estimators, ~Je is the best. The
present results confirm this conclusion. Thus ~Jr and ~Jc are not
shown in the Figures. Comparing the simulation results for the
three bootstrap estimates, ~Br is obviously the best estimator. In
general, the results tend to be such, that MRB(~Be)~2'MRB(~ML) and
MRB(~Br)(MRB(~Bc)~~B(~Be)' ~e coefficients of variation for the
three bootstrap estimators are more comparable. Thus ~Bc and ~Beare not presented in the Figures. The estimates of Salama et al.
(19~8) have nearly equal MRB and CV. However, there might be a
slight preference for ~S2. Thus ~S1 is not included in the Figvres.
When comparing the remaining five estimators in the Figures la
through 5b, it becomes clear that in general the estimators ~ andJe
~S2 should be preferred. In small designs, however, the jackknife
estimator has the undesired property of a strongly increasing CV
for values of ~ near ~2 which can be explained by the frequent oc-
currence of the situation that all Yjk equal 1 when calculating the
pseudo-estimates (see Figure lb). An attractive property of the
jackknife is that it also yields the variance estimate used to
determine proper confidence bounds for ~. A major disadvantage of
the estimating methods of Salama et al. (19~8) is the lack of an
estimator for the variance.

Provided that an experimenter works with designs, which are
not too small (the design oF Figure 4 seems to be large enough), it
is clear that the jackknife version of the ML estimator - obtained
by leaving out one element at a time - is the statistical procedure
of choice.
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Figure 3a
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