22 research outputs found

    Association between the Perioperative Antioxidative Ability of Platelets and Early Post-Transplant Function of Kidney Allografts: A Pilot Study

    Get PDF
    BACKGROUND: Recent studies have demonstrated that the actions of platelets may unfavorably influence post-transplant function of organ allografts. In this study, the association between post-transplant graft function and the perioperative activity of platelet antioxidants was examined among kidney recipients divided into early (EGF), slow (SGF), and delayed graft function (DGF) groups. METHODOLOGY/PRINCIPAL FINDINGS: Activities of superoxide dismutase, catalase, glutathione transferase (GST), glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G6P) were determined and levels of glutathione, oxidized glutathione, and isoprostane were measured in blood samples collected immediately before and during the first and fifth minutes of renal allograft reperfusion. Our results demonstrated a significant increase in isoprostane levels in all groups. Interestingly, in DGF patients, significantly lower levels of perioperative activity of catalase (p<0.02) and GST (p<0.02) were observed. Moreover, in our study, the activity of platelet antioxidants was associated with intensity of perioperative oxidative stress. For discriminating SGF/DGF from EGF, sensitivity, specificity, and positive and negative predictive values of platelet antioxidants were 81-91%, 50-58%, 32-37%, and 90-90.5%, respectively. CONCLUSIONS: During renal transplantation, significant changes occur in the activity of platelet antioxidants. These changes seem to be associated with post-transplant graft function and can be potentially used to differentiate between EGF and SGF/DGF. To the best of our knowledge, this is the first study to reveal the potential protective role of platelets in the human transplantation setting

    Plasma and Adipose Tissue Levels of Selected Growth/Inhibitory Factors, Proteolytic Enzymes and Sphingosine-1-Phosphate in Humans

    No full text
    Recent studies have shown that adipose tissue (AT), while implicated in orchestrating the sophisticated process termed “immunometabolism,” may also serve as a potential niche for various bone marrow-derived (stem) cells. However, at present, the direct biochemical and immunomodulatory composition of the human AT environment has not been studied. Several substances that might play a crucial role in regulating stem cell migration and/or homing to AT, have been implicated, namely, hepatocyte/vascular endothelial growth factor (VEGF/HGF), leukemia inhibitory factor (LIF), and sphingosine-1-phosphate (SIP). Therefore, we examined and compared the AT concentrations of these substances between plasma, subcutaneous, and omental AT samples derived from 35 generally healthy subjects. VEGF, HGF, LIF, and metalloproteinases (MMP)-2 and MMP9 levels were measured using ELISA, and S1P concentrations were analyzed using reverse-phase high performance liquid chromatography. We found that AT levels of analyzed growth/inhibitory factors were generally comparable (VEGF and LIF) or even higher (HGF) than the corresponding levels in the peripheral blood, particularly in overweight/obese subjects. In subcutaneous AT, significantly lower VEGF and LIF concentrations were observed, and these were accompanied by higher MMP levels. No depot-specific differences in S1P concentrations were found in all examined groups. Moreover, we established several associations between analyzed molecular substances and body composition, BMI, or adiposity index of the examined patients. In conclusion, our study revealed that human AT possesses relatively high levels of selected growth/inhibitory factors and of chemoattractants involved in the regulation of stem cell trafficking, and these factors are associated with the metabolic status of an individual. Further studies are needed to clearly establish the role of these factors in the regulation of bone marrow-derived (stem) cell homeostasis and homing in human AT

    Comparison between selected hormone and protein levels in serum and prostate tissue homogenates in men with benign prostatic hyperplasia and metabolic disorders

    No full text
    Katarzyna Grzesiak,1 Aleksandra Rył,2 Irena Baranowska-Bosiacka,3 Iwona Rotter,2 Barbara Dołęgowska,4 Marcin Słojewski,5 Olimpia Sipak-Szmigiel,6 Weronika Ratajczak,1 Anna Lubkowska,7 Emilia Metryka,3 Małgorzata Piasecka,1 Maria Laszczyńska1 1Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland; 2Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, Szczecin, Poland; 3Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland; 4Department of Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland; 5Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland; 6Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, Szczecin, Poland; 7Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Szczecin, Poland Purpose: The purpose of the study was to assess the relationship between changes in the levels of selected hormones in serum and prostate tissue homogenate in regard to metabolic disorders in patients with diagnosed, surgically treated benign prostatic hyperplasia (BPH). Patients and methods: The study involved a group of 154 men with a diagnosis of BPH with metabolic syndrome (MetS) and without MetS. The serum levels of the hormones &ndash; total testosterone, free testosterone, insulin, dehydroepiandrosterone sulfate, estradiol, luteinizing hormone, sex hormone binding globulin (SHBG), and insulin-like growth factor-1 (IGF-1) &ndash; were determined using the ELISA method. Prostate tissue sections obtained from the patients during transurethral resection of the prostate were frozen in liquid nitrogen. We determined the levels of the same hormones. Results: There was a statistically significant difference between the groups in terms of serum SHBG levels, but not in the prostate tissue SHBG levels. A similar relationship was observed in regard to IGF-1, the serum levels of which were significantly higher in patients with MetS. MetS had an effect on the ratio of hormone levels in serum to their levels in the prostate tissue. Correlations between the levels of biochemical parameters and the levels of hormones in serum and the prostate tissue of BPH patients with and without MetS demonstrate that serum SHBG levels correlated weakly with waist size and triglyceride levels. Conclusion: The occurrence of MetS in BPH patients was associated with changes in the levels of hormones and proteins. These changes, however, were not always equivalent to changes in the levels of these parameters in prostate tissue. It should also be mentioned that MetS in BPH patients had an influence on a quantitative balance between the levels of SHBG in serum and prostate tissue. Keywords: benign prostatic hyperplasia, hormone levels, metabolic disorder
    corecore