328 research outputs found

    Electronic and phonon excitations in {\alpha}-RuCl3_3

    Get PDF
    We report on THz, infrared reflectivity and transmission experiments for wave numbers from 10 to 8000 cm1^{-1} (\sim 1 meV - 1 eV) and for temperatures from 5 to 295 K on the Kitaev candidate material {\alpha}-RuCl3_3. As reported earlier, the compound under investigation passes through a first-order structural phase transition, from a monoclinic high-temperature to a rhombohedral low-temperature phase. The phase transition shows an extreme and unusual hysteretic behavior, which extends from 60 to 166 K. In passing this phase transition, in the complete frequency range investigated we found a significant reflectance change, which amounts almost a factor of two. We provide a broadband spectrum of dielectric constant, dielectric loss and optical conductivity from the THz to the mid infrared regime and study in detail the phonon response and the low-lying electronic density of states. We provide evidence for the onset of an optical energy gap, which is of order 200 meV, in good agreement with the gap derived from measurements of the DC electrical resistivity. Remarkably, the onset of the gap exhibits a strong blue shift on increasing temperatures.Comment: 18 pages, 7 figure

    Sub-gap optical response across the structural phase transition in van der Waals layered \alpha-RuCl3_3

    Get PDF
    We report magnetic, thermodynamic, thermal expansion, and on detailed optical experiments on the layered compound α\alpha-RuCl3_3 focusing on the THz and sub-gap optical response across the structural phase transition from the monoclinic high-temperature to the rhombohedral low-temperature structure, where the stacking sequence of the molecular layers is changed. This type of phase transition is characteristic for a variety of tri-halides crystallizing in a layered honeycomb-type structure and so far is unique, as the low-temperature phase exhibits the higher symmetry. One motivation is to unravel the microscopic nature of spin-orbital excitations via a study of temperature and symmetry-induced changes. We document a number of highly unusual findings: A characteristic two-step hysteresis of the structural phase transition, accompanied by a dramatic change of the reflectivity. An electronic excitation, which appears in a narrow temperature range just across the structural phase transition, and a complex dielectric loss spectrum in the THz regime, which could indicate remnants of Kitaev physics. Despite significant symmetry changes across the monoclinic to rhombohedral phase transition, phonon eigenfrequencies and the majority of spin-orbital excitations are not strongly influenced. Obviously, the symmetry of the single molecular layers determine the eigenfrequencies of most of these excitations. Finally, from this combined terahertz, far- and mid-infrared study we try to shed some light on the so far unsolved low energy (< 1eV) electronic structure of the ruthenium 4d54d^5 electrons in α\alpha-RuCl3_3.Comment: 22 pages, 9 figure

    Magnon bound states vs. anyonic Majorana excitations in the Kitaev honeycomb magnet α\alpha-RuCl3_3

    Get PDF
    The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitaev candidate materials, such as α\alpha-RuCl3_3. Currently, two competing scenarios exist for the intermediate field phase of this compound (B=710B=7-10 T), based on experimental as well as theoretical results: (i) conventional multiparticle magnetic excitations of integer quantum number vs. (ii) Majorana fermionic excitations of possibly non-Abelian nature with a fractional quantum number. To discriminate between these scenarios a detailed investigation of excitations over a wide field-temperature phase diagram is essential. Here we present Raman spectroscopic data revealing low-energy quasiparticles emerging out of a continuum of fractionalized excitations at intermediate fields, which are contrasted by conventional spin-wave excitations. The temperature evolution of these quasiparticles suggests the formation of bound states out of fractionalized excitations

    Investigating combinatorial approaches in virtual screening on human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): A case study for small molecule kinases

    Get PDF
    Efforts toward improving the predictiveness in tier-based approaches to virtual screening (VS) have mainly focused on protein kinases. Despite their significance as drug targets, small molecule kinases have been rarely tested with these approaches. In this paper, we investigate the efficacy of a pharmacophore screening-combined structure-based docking approach on the human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, an emerging target for cancer chemotherapy. Six out of a total 1364 compounds from NCI\u27s Diversity Set II were selected as true actives via throughput screening. Using a database constructed from these compounds, five programs were tested for structure-based docking (SBD) performance, the MOE of which showed the highest enrichments and second highest screening rates. Separately, using the same database, pharmacophore screening was performed, reducing 1364 compounds to 287 with no loss in true actives, yielding an enrichment of 4.75. When SBD was retested with the pharmacophore filtered database, 4 of the 5 SBD programs showed significant improvements to enrichment rates at only 2.5% of the database, with a 7-fold decrease in an average VS time. Our results altogether suggest that combinatorial approaches of VS technologies are easily applicable to small molecule kinases and, moreover, that such methods can decrease the variability associated with single-method SBD approaches. © 2011 Elsevier Inc. All rights reserved

    Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer

    Get PDF
    Young-Il Jeong1,*, Do Hyung Kim1,2,*, Chung-Wook Chung1, Jin-Ju Yoo1, Kyung Ha Choi1, Cy Hyun Kim1,2, Seung Hee Ha1, Dae Hwan Kang1,2 1National Research and Development Center for Hepatobiliary Cancer, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea, Research Institute for Convergence of Biomedical Science and Technology, 2School of Medicine, Pusan National University, Yangsan, Republic of Korea*These authors contributed equally to this work.Background: Polymeric micelles using amphiphilic macromolecules are promising vehicles for antitumor targeting. In this study, we prepared anticancer agent-incorporated polymeric micelles using novel block copolymer.Methods: We synthesized a block copolymer composed of dextran and poly (DL-lactide-co-glycolide) (DexbLG) for antitumor drug delivery. Doxorubicin was selected as the anticancer drug, and was incorporated into polymeric micelles by dialysis. Polymeric micelles were observed by transmission electron microscopy to be spherical and smaller than 100 nm, with a narrow size distribution. The particle size of doxorubicin-incorporated polymeric micelles increased with increasing drug content. Higher initial drug feeding also increased the drug content. Results: During the drug-release study, an initial burst release of doxorubicin was observed for 10 hours, and doxorubicin was continuously released over 4 days. To investigate the in vitro anticancer effects of the polymeric micelles, doxorubicin-resistant HuCC-T1 cells were treated with a very high concentration of doxorubicin. In an antiproliferation study, the polymeric micelles showed higher cytotoxicity to doxorubicin-resistant HuCC-T1 cells than free doxorubicin, indicating that the polymeric micelles were effectively engulfed by tumor cells, while free doxorubicin hardly penetrated the tumor cell membrane. On confocal laser scanning microscopy, free doxorubicin expressed very weak fluorescence intensity, while the polymeric micelles expressed strong red fluorescence. Furthermore, in flow cytometric analysis, fluorescence intensity of polymeric micelles was almost twice as high than with free doxorubicin.Conclusion: DexbLG polymeric micelles incorporating doxorubicin are promising vehicles for antitumor drug targeting.Keywords: dextran, polymeric micelle, block copolymer, poly(DL-lactide-co-glycolide

    Relationship matters: a qualitative study of medical students' experiences in a learner-driven research program in South Korea

    Get PDF
    Background Although research experience is important for medical students, it is difficult to develop research skills only through a formal curriculum. To develop research programs that address the authentic needs of students and align with the entirety of the medical school curriculum, a learner-centered approach may be more effective than an instructor-centered approach. This study investigates medical student perspectives on factors that help them develop research competency. Methods Hanyang University College of Medicine in South Korea operates the Medical Scientist Training Program (MSTP) as a supplement to its formal curriculum. Semi-structured interviews were held with 18 students (20 cases) in the program, and qualitative content analysis was performed using the software tool MAXQDA20. Results The findings are discussed in relation to three domains: learner engagement, instructional design, and program development. The students were more engaged when they perceived the program as a new experience, had prior research experience, wanted to make a good impression, and felt a sense of contribution. In terms of instructional design, they positively participated in research when their supervisors respected them, set clear tasks, provided constructive feedback, and invited them into the research community. In particular, the students highly valued relationships with their professors, and these relationships served not only as a main motivating factor in their research participation but also affected their college lives and careers. Conclusions The longitudinal relationship between students and professors has newly emerged in the Korean context as a factor that strengthens student engagement in research and the complementary relationship between formal curriculum and MSTP was highlighted to encourage student engagement in research

    Field-induced spin level crossings within a quasi-XY antiferromagnetic state in Ba2_{2}FeSi2_{2}O7_{7}

    Full text link
    We present a high-field study of the strongly anisotropic easy-plane square lattice SS = 2 quantum magnet Ba2_{2}FeSi2_{2}O7_{7}. This compound is a rare high-spin antiferromagnetic system with very strong easy-plane anisotropy, such that the interplay between spin level crossings and antiferromagnetic order can be studied. We observe a magnetic field-induced spin level crossing occurring within an ordered state. This spin level crossing appears to preserve the magnetic symmetry while producing a non-monotonic dependence the order parameter magnitude. The resulting temperature-magnetic field phase diagram exhibits two dome-shaped regions of magnetic order overlapping around 30 T. The ground state of the lower-field dome is predominantly a linear combination of Sz=0| S^{z} = 0 \rangle and Sz=1 |S^{z} = 1 \rangle states, while the ground state of the higher-field dome can be approximated by a linear combination of Sz=1| S^{z} = 1 \rangle and Sz=2 | S^{z} = 2\rangle states. At 30 T, where the spin levels cross, the magnetization exhibits a slanted plateau, {\color {black}the magnetocaloric effect shows a broad hump, and the electric polarization shows a weak slope change}. We determined the detailed magnetic phase boundaries and the spin level crossings using measurements of magnetization, electric polarization, and the magnetocaloric effect in pulsed magnetic fields to 60 T. We calculate these properties using a mean field theory based on direct products of SU(5) coherent states and find good agreement. Finally, we measure and calculate the magnetically-induced electric polarization that reflects magnetic ordering and spin level crossings. This multiferroic behavior provides another avenue for detecting phase boundaries and symmetry changes.Comment: 9 pages, 5 figure
    corecore