4 research outputs found

    Time-Resolved EPR as a Tool to Investigate Oxygen Quenching in Photoinitiated Radical Polymerizations

    No full text
    It is challenging to obtain absolute rate constants for the quenching of organic radicals by molecular oxygen because they often do not present absorbance in the UV–vis range. Here, it is shown that time-resolved EPR (chemically induced dynamic electron polarization, or CIDEP) spectroscopy is useful in establishing rate constants for the addition of benzoyl radicals to molecular oxygen. It was found that benzoyl radicals are particularly reactive toward O<sub>2</sub> and can, therefore, act as oxygen scavengers in the initiating phase of radical polymerizations. Kinetic simulations underpin this reactivity

    UV-Triggered End Group Conversion of Photo-Initiated Poly(methyl methacrylate)

    No full text
    The analysis of photo-initiated poly­(methyl methacrylate) via electrospray ionization-mass spectrometry (ESI–MS) (synthesized by pulsed laser polymerization (PLP, at λ = 351 nm) of methyl methacrylate (MMA) and benzoin as photoinitiator at 6 mJ/pulse laser energy) evidences the presence of unidentified species. The determination of the origin of these species requires a detailed investigation via size exclusion chromatography-electrospray ionization-mass spectrometry (SEC/ESI–MS) and chemically induced dynamic nuclear polarization-nuclear magnetic resonance spectroscopy (CIDNP–NMR). It was found that post-irradiation of benzoin-initiated poly­(methyl methacrylate) leads to α-cleavage of the benzoyl fragment leading to a sequence of cascade reactions, including the formation of an additional double bond within the polymer chain as evidenced via ESI–MS. Furthermore, the reaction products of the benzoyl radical post α-cleavage (e.g., benzaldehyde, phenyl methyl ketone, methyl formate, or methane) as well as the formed macroradical can be followed by CIDNP–NMR, which allows establishing a reaction mechanism for the UV-induced cleavage process. The study thus evidence thatif the integrity of UV initiated polymers is to be kept intact during their synthesisvery low irradiation energies need to be employed

    Photoinduced Reactivity of the Soft Hydrotris(6-<i>tert</i>-butyl-3-thiopyridazinyl)borate Scorpionate Ligand in Sodium, Potassium, and Thallium Salts

    No full text
    The soft scorpionate ligand hydrotris­(6-<i>tert</i>-butyl-3-thiopyridazinyl)­borate (<b>Tn</b>) was found to exhibit pronounced photoreactivity. Full elucidation of this process revealed the formation of 6-<i>tert</i>-butylpyridazine-3-thione (<b>PnH</b>) and 4,5-dihydro-6-<i>tert</i>-butylpyridazine-3-thione (<b>H</b><sub><b>2</b></sub><b>PnH</b>). Under exclusion of light, no solvolytic reactions occur, allowing the development of high-yield preparation protocols for the sodium, potassium, and thallium salts and improving the yield for their derived copper boratrane complex. The photoreactivity is relevant for all future studies with electron-deficient scorpionate ligands

    Acylgermanes: Photoinitiators and Sources for Ge-Centered Radicals. Insights into their Reactivity

    No full text
    Acylgermanes have been shown to act as efficient photoinitiators. In this investigation we show how dibenzoyldiethylgermane <b>1</b> reacts upon photoexcitation. Our real-time investigation utilizes femto- and nanosecond transient absorption, time-resolved EPR (50 ns), photo-chemically induced dynamic nuclear polarization, DFT calculations, and GC-MS analysis. The benzoyldiethylgermyl radical <b>G</b>• is formed via the triplet state of parent <b>1</b>. On the nanosecond time scale this radical can recombine or undergo hydrogen-transfer reactions. Radical <b>G</b>• reacts with butyl acrylate at a rate of 1.2 ± 0.1 × 10<sup>8</sup> and 3.2 ± 0.2 × 10<sup>8</sup> M<sup>–1</sup> s<sup>–1</sup>, in toluene and acetonitrile, respectively. This is ∼1 order of magnitude faster than related phosphorus-based radicals. The initial germyl and benzoyl radicals undergo follow-up reactions leading to oligomers comprising Ge–O bonds. LC-NMR analysis of photocured mixtures containing <b>1</b> and the sterically hindered acrylate 3,3-dimethyl-2-methylenebutanoate reveals that the products formed in the course of a polymerization are consistent with the intermediates established at short time scales
    corecore