243 research outputs found

    Local structure of In_(0.5)Ga_(0.5)As from joint high-resolution and differential pair distribution function analysis

    Full text link
    High resolution total and indium differential atomic pair distribution functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high energy and anomalous x-ray diffraction experiments, respectively. The first peak in the total PDF is resolved as a doublet due to the presence of two distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves only atomic pairs containing In, yields chemical specific information and helps ease the structure data interpretation. Both PDFs have been fit with structure models and the way in that the underlying cubic zinc-blende lattice of In_(0.5)Ga_(0.5)As semiconductor alloy distorts locally to accommodate the distinct In-As and Ga-As bond lengths present has been quantified.Comment: 9 pages, 7 figur

    Effects of atomic short-range order on the properties of perovskite alloys in their morphotropic phase boundary

    Full text link
    The effects of atomic short-range order on the properties of Pb(Zr_{1-x}Ti_x)O_3 alloy in its morphotropic phase boundary (MPB) are predicted by combining first-principles-based methods and annealing techniques. Clustering is found to lead to a compositional expansion of this boundary, while the association of unlike atoms yields a contraction of this region. Atomic short-range order can thus drastically affect properties of perovskite alloys in their MPB, by inducing phase transitions. Microscopic mechanisms responsible for these effects are revealed and discussed.Comment: 4 pages, with 2 postscript figures embedded. Uses REVTEX4 and graphicx macro

    Stabilization of Polar Nano Regions in Pb-free ferroelectrics

    Full text link
    Formation of polar nano regions through solid-solution additions are known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nano regions, understanding their real-space atomic structure and dynamics of formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nano regions in the Pb-free ferroelectric of Ba(Zr,Ti)O3. It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomic displacements for ferroelectric polarization are slowed sufficiently, which leads to increased local correlation among dipoles below THz frequencies. The dynamic pair distribution function technique demonstrates unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties

    Direct observation of the formation of polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 using neutron pair distribution function analysis

    Get PDF
    Using neutron pair distribution function (PDF) analysis over the temperature range from 1000 K to 15 K, we demonstrate the existence of local polarization and the formation of medium-range, polar nanoregions (PNRs) with local rhombohedral order in a prototypical relaxor ferroelectric Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3. We estimate the volume fraction of the PNRs as a function of temperature and show that this fraction steadily increases from 0 % to a maximum of \sim 30% as the temperature decreases from 650 K to 15 K. Below T\sim200 K the PNRs start to overlap as their volume fraction reaches the percolation threshold. We propose that percolating PNRs and their concomitant overlap play a significant role in the relaxor behavior of Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3.Comment: 4 pages, 3 figure

    Incommensurate lattice distortion in the high temperature tetragonal phase of La2x_{2-x}(Sr,Ba)x_{x}CuO4_{4}

    Full text link
    We report incommensurate diffuse (ICD) scattering appearing in the high-temperature-tetragonal (HTT) phase of La2x_{2-x}(Sr,Ba)x_{x}CuO4_{4} with 0.07x0.200.07 \leq x \leq 0.20 observed by the neutron diffraction technique. For all compositions, a sharp superlattice peak of the low-temperature-orthorhombic (LTO) structure is replaced by a pair of ICD peaks with the modulation vector parallel to the CuO6_6 octahedral tilting direction, that is, the diagonal Cu-Cu direction of the CuO2_2 plane, above the LTO-HTT transition temperature TsT_s. The temperature dependences of the incommensurability δ\delta for all samples scale approximately as T/TsT/T_s, while those of the integrated intensity of the ICD peaks scale as (TTs)1(T-T_s)^{-1}. These observations together with absence of ICD peaks in the non-superconducting x=0.05x=0.05 sample evince a universal incommensurate lattice instability of hole-doped 214 cuprates in the superconducting regime.Comment: 6 pages, 6 figure

    La gestión investigativa universitaria: Un problema de vieja data sin pronta solución (Caso analítico uptc)

    Get PDF
    Al hacer referencia a los ejes de la universidad, es imposible dejar de ubicarse en el contexto de la Ley 30 de diciembre 28 de 1992, por la que “se organiza el servicio público de la educación superior”, la cual en estos momentos atraviesa por una reforma coyuntural de gigantescas implicaciones para el quehacer universitario; esto se presenta porque es allí donde tal vez se origina la fundamentación teórica de lo que la Ley en su momento planteó, pero que en la realidad no se ha llevado a cabo, ya sea por los legisladores o por los mismos administradores de turno que no han llegado a reglamentar claramente esta Ley marco que rige, y que infortunadamente ha traído en algunos puntos cierto sinsabor a la actividad universitaria

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Bifunctional hydrous RuO2 nanocluster electrocatalyst embedded in carbon matrix for efficient and durable operation of rechargeable zinc-air batteries

    Get PDF
    Ruthenium oxide (RuO2) is the best oxygen evolution reaction (OER) electrocatalyst. Herein, we demonstrated that RuO2 can be also efficiently used as an oxygen reduction reaction (ORR) electrocatalyst, thereby serving as a bifunctional material for rechargeable Zn-air batteries. We found two forms of RuO2 (i.e. hydrous and anhydrous, respectively h-RuO2 and ah-RuO2) to show different ORR and OER electrocatalytic characteristics. Thus, h-RuO2 required large ORR overpotentials, although it completed the ORR via a 4e process. In contrast, h-RuO2 triggered the OER at lower overpotentials at the expense of showing very unstable electrocatalytic activity. To capitalize on the advantages of h-RuO2 while improving its drawbacks, we designed a unique structure (RuO2@C) where h-RuO2 nanoparticles were embedded in a carbon matrix. A double hydrophilic block copolymer-templated ruthenium precursor was transformed into RuO2 nanoparticles upon formation of the carbon matrix via annealing. The carbon matrix allowed overcoming the limitations of h-RuO2 by improving its poor conductivity and protecting the catalyst from dissolution during OER. The bifunctional RuO2@C catalyst demonstrated a very low potential gap (triangle EOER-ORR=ca. 1.0V) at 20 mA cm(-2). The Zn|| RuO2@C cell showed an excellent stability (i.e. no overpotential was observed after more than 40 h)
    corecore