56 research outputs found

    Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer

    Full text link

    >

    No full text

    The type specimens of bees (Hymenoptera, Apoidea) deposited in the Zoological Institute of the Russian Academy of Sciences, St. Petersburg. Contribution V. Family Andrenidae, genus Andrena Fabricius, 1775, species described by E. Eversmann

    No full text
    Astafurova, Yulia V., Proshchalykin, Maxim Yu., Sidorov, Dmitry A. (2022): The type specimens of bees (Hymenoptera, Apoidea) deposited in the Zoological Institute of the Russian Academy of Sciences, St. Petersburg. Contribution V. Family Andrenidae, genus Andrena Fabricius, 1775, species described by E. Eversmann. Zootaxa 5190 (3): 393-418, DOI: https://doi.org/10.11646/zootaxa.5190.3.

    The Estimation of the Potential for Using Smart-Trackers as a Part of a Medical Indoor-Positioning System

    No full text
    This research aims to estimate the feasibility of using smart-bracelets as a part of a medicine indoor-positioning system, to monitor the health status and location of patients in a hospital. The smart-bracelet takes on the role of a token of the system and can measure pulse, blood pressure and saturation and provide data transmission over the BLE. The distance between token and anchor was calculated by the RSSI. The position of a token and anchor relative to each other was determined by the trilateration method. The results of the research showed that the accuracy of the developed system in a static position is 1.46 m and exceeds 3 m in a dynamic position. Results of experiments showed that measurements from the smart bracelets are transmitted to the server of the system without distortion. The study results indicated that smart-bracelets could be used to locate patients inside a hospital or estimate their current health state. Given the low accuracy of systolic pressure measurement, it is recommended to develop an algorithm that will allow smooth measuring error for higher-precision estimation of the patient’s general health state. In addition, it is planned to improve the positioning algorithm

    The Estimation of the Potential for Using Smart-Trackers as a Part of a Medical Indoor-Positioning System

    No full text
    This research aims to estimate the feasibility of using smart-bracelets as a part of a medicine indoor-positioning system, to monitor the health status and location of patients in a hospital. The smart-bracelet takes on the role of a token of the system and can measure pulse, blood pressure and saturation and provide data transmission over the BLE. The distance between token and anchor was calculated by the RSSI. The position of a token and anchor relative to each other was determined by the trilateration method. The results of the research showed that the accuracy of the developed system in a static position is 1.46 m and exceeds 3 m in a dynamic position. Results of experiments showed that measurements from the smart bracelets are transmitted to the server of the system without distortion. The study results indicated that smart-bracelets could be used to locate patients inside a hospital or estimate their current health state. Given the low accuracy of systolic pressure measurement, it is recommended to develop an algorithm that will allow smooth measuring error for higher-precision estimation of the patient’s general health state. In addition, it is planned to improve the positioning algorithm

    A Natural Vanadate–Arsenate Isomorphous Series with Jeffbenite-Type Structure: New Fumarolic Minerals Udinaite, NaMg<sub>4</sub>(VO<sub>4</sub>)<sub>3</sub>, and Arsenudinaite, NaMg<sub>4</sub>(AsO<sub>4</sub>)<sub>3</sub>

    No full text
    Two new isostructural minerals udinaite and arsenudinaite with the end-member formulae NaMg4(VO4)3 and NaMg4(AsO4)3, respectively, are found in the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. They are associated with one another and anhydrite, diopside, hematite, schäferite, berzeliite, svabite, calciojohillerite, tilasite, reznitskyite, ludwigite, rhabdoborite-group borates, forsterite, magnesioferrite, fluorapatite, pliniusite, and powellite. Both minerals occur as equant tetragonal prismatic–dipyramidal crystals up to 0.15 mm, aggregates up to 1 cm and interrupted crusts up to 2 × 2 cm2. Udinaite and arsenudinaite, visually indistinguishable from one another, are transparent, beige or brownish-yellowish, with vitreous lustre. Both minerals are optically uniaxial (–); ω = 1.785/1.777 and ε = 1.830/1.820, Dcalc. = 3.613/3.816 g·cm−3 (udinaite/arsenudinaite). The empirical formulae are: udinaite: (Na0.55Ca0.16)Σ0.71(Mg4.04Mn0.02Fe0.01)Σ4.07(V1.63As1.05P0.28Si0.03S0.01)Σ3.00O12; arsenudinaite: (Na0.57Ca0.13)Σ0.70(Mg4.01Mn0.01Fe0.01)Σ4.03(As2.07V0.84P0.10Si0.01S0.01)Σ3.03O12. Both minerals are tetragonal, I-42d, Z = 4, a = 6.8011(2)/6.8022(1), c = 19.1839(12)/19.1843(6) Å, and V = 887.35(7)/887.66(4) Å3, R1 = 0.0287/0.0119 (udinaite/arsenudinaite). Their crystal structure consists of the helical chains of edge-sharing MgO6 octahedra and isolated TO4 tetrahedra, forming a heteropolyhedral pseudo-framework with Na cations located in cavities. Both minerals are isostructural to jeffbenite. Udinaite and arsenudinaite form an isomorphous series in which the contents of T constituents vary within (in apfu): V1.6–0.1As2.8–1.0P0.4–0.0

    Dioskouriite, CaCu<sub>4</sub>Cl<sub>6</sub>(OH)<sub>4</sub>∙4H<sub>2</sub>O: A New Mineral Description, Crystal Chemistry and Polytypism

    No full text
    A new mineral, dioskouriite, CaCu4Cl6(OH)4∙4H2O, represented by two polytypes, monoclinic (2M) and orthorhombic (2O), which occur together, was found in moderately hot zones of two active fumaroles, Glavnaya Tenoritovaya and Arsenatnaya, at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. Dioskouriite seems to be a product of the interactions involving high-temperature sublimate minerals, fumarolic gas and atmospheric water vapor at temperatures not higher than 150 °C. It is associated with avdoninite, belloite, chlorothionite, eriochalcite, sylvite, halite, carnallite, mitscherlichite, chrysothallite, sanguite, romanorlovite, feodosiyite, mellizinkalite, flinteite, kainite, gypsum, sellaite and earlier hematite, tenorite and chalcocyanite in Glavnaya Tenoritovaya and with avdoninite and earlier hematite, tenorite, fluorophlogopite, diopside, clinoenstatite, sanidine, halite, aphthitalite-group sulfates, anhydrite, pseudobrookite, powellite and baryte in Arsenatnaya. Dioskouriite forms tabular, lamellar or flattened prismatic, typically sword-like crystals up to 0.01 mm × 0.04 mm × 0.1 mm combined in groups or crusts up to 1 × 2 mm2 in area. The mineral is transparent, bright green with vitreous luster. It is brittle; cleavage is distinct. The Mohs hardness is ca. 3. Dmeas is 2.75(1) and Dcalc is 2.765 for dioskouriite-2O and 2.820 g cm−3 for dioskouriite-2M. Dioskouriite-2O is optically biaxial (+), α = 1.695(4), β = 1.715(8), γ = 1.750(6) and 2Vmeas. = 70(10)°. The Raman spectrum is reported. The chemical composition (wt%, electron microprobe data, H2O calculated by total difference; dioskouriite-2O/dioskouriite-2M) is: K2O 0.03/0.21; MgO 0.08/0.47; CaO 8.99/8.60; CuO 49.24/49.06; Cl 32.53/32.66; H2O(calc.) 16.48/16.38; -O=Cl −7.35/−7.38; total 100/100. The empirical formulae based on 14 O + Cl apfu are: dioskouriite-2O: Ca1.04(Cu4.02Mg0.01)Σ4.03[Cl5.96(OH)3.90O0.14]Σ10∙4H2O; dioskouriite-2M: (Ca1.00K0.03)Σ4.03(Cu4.01Mg0.08)Σ4.09[Cl5.99(OH)3.83O0.18]Σ10∙4H2O. Dioskouriite-2M has the space group P21/c, a = 7.2792(8), b = 10.3000(7), c = 20.758(2) Å, β = 100.238(11)°, V = 1531.6(2) Å3 and Z = 4; dioskouriite-2O: P212121, a = 7.3193(7), b = 10.3710(10), c = 20.560(3) Å, V = 1560.6(3) Å3 and Z = 4. The crystal structure (solved from single-crystal XRD data, R = 0.104 and 0.081 for dioskouriite-2M and -2O, respectively) is unique. The structures of both polytypes are based upon identical BAB layers parallel to (001) and composed from Cu2+-centered polyhedra. The core of each layer is formed by a sheet A of edge-sharing mixed-ligand octahedra centered by Cu(1), Cu(2), Cu(3), Cu(5) and Cu(6) atoms, whereas distorted Cu(4)(OH)2Cl3 tetragonal pyramids are attached to the A sheet on both sides, along with the Ca(OH)2(H2O)4Cl2 eight-cornered polyhedra, which provide the linkage of the two adjacent layers via long Ca−Cl bonds. The Cu(4) and Ca polyhedra form the B sheet. The difference between the 2M and 2O polytypes arises as a result of different stacking of layers along the c axis. The cation array of the layer corresponds to the capped kagomé lattice that is also observed in several other natural Cu hydroxychlorides: atacamite, clinoatacamite, bobkingite and avdoninite. The mineral is named after Dioskouri, the famous inseparable twin brothers of ancient Greek mythology, Castor and Polydeuces, the same in face but different in exercises and achievements; the name is given in allusion to the existence of two polytypes that are indistinguishable in appearance but different in symmetry, unit cell configuration and XRD pattern
    • …
    corecore