14 research outputs found

    Imaging and Elastometry of Blood Clots Using Magnetomotive Optical Coherence Tomography and Labeled Platelets

    Get PDF
    Improved methods for imaging and assessment of vascular defects are needed for directing treatment of cardiovascular pathologies. In this paper, we employ magnetomotive optical coherence tomography (MMOCT) as a platform both to detect and to measure the elasticity of blood clots. Detection is enabled through the use of rehydrated, lyophilized platelets loaded with superparamagnetic iron oxides (SPIO-RL platelets) that are functional infusion agents that adhere to sites of vascular endothelial damage. Evidence suggests that the sensitivity for detection is improved over threefold by magnetic interactions between SPIOs inside RL platelets. Using the same MMOCT system, we show how elastometry of simulated clots, using resonant acoustic spectroscopy, is correlated with the fibrin content of the clot. Both methods are based upon magnetic actuation and phase-sensitive optical monitoring of nanoscale displacements using MMOCT, underscoring its utility as a broad-based platform to detect and measure the molecular structure and composition of blood clots

    Mitochondria as a Possible Place for Initial Stages of Steroid Biosynthesis in Plants

    No full text
    With the aim of thorough comparison of steroidogenic systems of plants and animals, transgenic plants of Solanaceae family expressing CYP11A1 cDNA encoding cytochrome P450SCC of mammalian mitochondria were further analysed. Positive effect of CYP11A1 on resistance of the transgenic tobacco plants to the infection by fungal phytopathogene Botrytis cinerea was for the first time detected. Subtle changes in mitochondria of the transgenic Nicotiana tabacum plants expressing mammalian CYP11A1 cDNA were demonstrated by transmissive electron microscopy. The main components of the electron transfer chain of plant mitochondria were for the first time cloned and characterized. It was established that plants from the Solanacea family (tomato, tobacco and potato) contain two different genes with similar exon-intron structures (all contain 8 exons) encoding mitochondrial type ferredoxins (MFDX), and one gene for mitochondrial ferredoxin reductase (MFDXR). The results obtained point out on profound relatedness of electron transfer chains of P450-dependent monooxygenases in mammalian and plant mitochondria and support our previous findings about functional compatability of steroidogenic systems of Plantae and Animalia
    corecore