29 research outputs found

    Guidelines for the functional annotation of microRNAs using the Gene Ontology.

    Get PDF
    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual).R.P.H. and R.C.L are supported by funding from a British Heart Foundation grant (RG/13/5/30112) and the National Institute for Health Research University College London Hospitals Biomedical Research Centre. M.M. is a Senior Research Fellow of the British Heart Foundation (FS/13/2/29892). A.Z. is an Intermediate Fellow of the British Heart Foundation (FS/13/18/30207). D.S. is supported by a grant awarded to the Mouse Genome Database from the National Human Genome Research Institue at the US National Institutes of Health (HG-00330). P.D’E., M.G., M.O-M. are supported by grants from the US National Institutes of Health (P41 HG003751 and U54 GM114833), Ontario Research Fund, and the European Molecular Biology Laboratory. D.H. is supported by a grant awarded to the Zebrafish Information Network fromthe National Human Genome Research Institute at the US National Institutes of Health (HG002659). A.Z.K. is funded by a NIHR University College London Hospitals Biomedical Research Centre, Research Capability Funding award (RCF) (RCF123). L.M. is a Ragnar Söderberg fellow in Medicine (M-14/55), and received funding from Swedish Heart-Lung-Foundation (20120615, 20130664, 20140186). Huntley, RP 22 R.B. and D.O-S. are supported by R.B. and D.O-S. are supported by a grant awarded to The Gene Ontology Consortium (Principal Investigators: JA Blake, JM Cherry, S Lewis, PW Sternberg and P Thomas) by the National Human Genome Research Institute (NHGRI) (#U41 HG22073). V.P. and J.R.S. are supported by a grant from the National Heart, Lung, and Blood Institute on behalf of the National Institutes of Health (HL64541). K.V.A. is supported by a grant awarded to the Gene Ontology Consortium from the National Human Genome Research Institute at the US National Institutes of Health (HG002273). V.W. is supported by a Wellcome Trust grant (104967/Z/14/Z). We would like to thank Leonore Reiser and Tanya Berardini who provided guidance on the plant miRNA processing pathway. Also thanks to David Hill, Harold Drabkin, Judith Blake, Karen Christie, Donghui Li and Pascale Gaudet who contributed to discussions regarding GO curation procedures and to Lisa Matthews and Bruce May who provided helpful feedback on the manuscript. We are very grateful to Tony Sawford and Maria Martin from the European Bioinformatics Institute for access to the online GO curation tool, which is an essential component of this annotation project. Many thanks to members of the GO Editorial Office for useful discussions about the placement and definition of new GO terms. We also thank Alex Bateman and Anton Petrov for being responsive to our feedback regarding RNAcentral functionality. Author contributions: R.C.L. initiated discussions in the GO Consortium regarding miRNA curation guidelines and supervised the project, R.P.H. researched and constructed the guidelines and wrote the manuscript, R.P.H., R.C.L., D.S., R.B., P.D’E., M.G., M.O-M., D.H., V.P., J.R.S., K.V.A. and V.W. contributed to discussions regarding GO curation procedures and provided feedback on the manuscript. D.O-S. provided the expertise on definitions and placements of miRNA-related GO terms and performed the necessary updates and additions to both the GO and to the annotation extension relations used herein. M.M., A.Z., L.M. and A.Z.K. provided guidance with the scientific aspect of the guidelines and provided feedback on the manuscript.This is the final version of the article. It first appeared from Cold Spring Harbor Press via http://dx.doi.org/10.1261/rna.055301.11

    Literature Triage and Indexing in the Mouse Genome Informatics (MGI) Group

    Get PDF
    The Mouse Genome Informatics (MGI; "http://www.informatics.jax.org":http://www.informatics.jax.org) group is comprised of several collaborating projects including the Mouse Genome Database (MGD) Project, the Gene Expression Database (GXD) Project, the Mouse Tumor Biology (MTB) Database Project, and the Gene Ontology (GO) Project. Literature identification and collection is performed cooperatively amongst the groups.

In recent years many institutional libraries have transitioned from a focus largely on print holdings to one of electronic access to journals. This change has necessitated adaptation on the part of the MGI curatorial group. Whereas the majority of journals covered by the group used to be surveyed in paper form, those journals are now surveyed electronically. Approximately 160 journals have been identified as those most relevant to the various database groups. Each curator in the group has the responsibility of scanning several journals for articles relevant to any of the database projects. Articles chosen via this process are marked as to their potential significance for various projects. Each article is catalogued in a Master Bibliography section of the MGI database system and annotated to the database sections for which it has been identified as relevant. A secondary triage process allows curators from each group to scan the chosen articles and mark ones desired for their project if such annotation has been missed on the initial scan.

Once articles have been identified for each database project a variety of processes are implemented to further categorize and index data from those articles. For example, the Alleles and Phenotype section of the MGD database indexes each article marked for MGD and in this indexing process they identify each mouse gene and allele examined in the article. The GXD database indexing process has a different focus. In this case articles are indexed with regard to the stage of development used in the study as well as the assay technique used. In each case the indexing gives an overview of the data held in the article and assists in the more extensive curation performed in the following step of the curation process. Indexing also provides each group with valuable information used to prioritize and streamline the overall curation process.

The MGI projects are supported by NHGRI grants HG000330, HG00273, and HG003622, NICHD grant HD033745, and NCI grant CA089713

    Guidelines for the functional annotation of microRNAs using the Gene Ontology

    Get PDF
    ABSTRACT MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual)

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    From Zygote to Blastocyst: Application of Ultrashort Lasers in the Field of Assisted Reproduction and Developmental Biology

    No full text
    Although the use of lasers in medical diagnosis and therapies, as well as in fundamental biomedical research is now almost routine, advanced laser sources and new laser-based methods continue to emerge. Due to the unique ability of ultrashort laser pulses to deposit energy into a microscopic volume in the bulk of a transparent material without disrupting the surrounding tissues, the ultrashort laser-based microsurgery of cells and subcellular components within structurally complex and fragile specimens such as embryos is becoming an important tool in developmental biology and reproductive medicine. In this review, we discuss the mechanisms of ultrashort laser pulse interaction with the matter, advantages of their application for oocyte and preimplantation embryo microsurgery (e.g., for oocyte/blastomere enucleation and embryonic cell fusion), as well as for nonlinear optical microscopy for studying the dynamics of embryonic development and embryo quality assessment. Moreover, we focus on ultrashort laser-based approaches and techniques that are increasingly being applied in the fundamental research and have the potential for successful translation into the IVF (in vitro fertilization) clinics, such as laser-mediated individual embryo labelling and controlled laser-assisted hatching

    Application of Ultrashort Lasers in Developmental Biology: A Review

    No full text
    The evolution of laser technologies and the invention of ultrashort laser pulses have resulted in a sharp jump in laser applications in life sciences. Developmental biology is no exception. The unique ability of ultrashort laser pulses to deposit energy into a microscopic volume in the bulk of transparent material without disrupting the surrounding tissues makes ultrashort lasers a versatile tool for precise microsurgery of cells and subcellular components within structurally complex and fragile specimens like embryos as well as for high-resolution imaging of embryonic processes and developmental mechanisms. Here, we present an overview of recent applications of ultrashort lasers in developmental biology, including techniques of noncontact laser-assisted microsurgery of preimplantation mammalian embryos for oocyte/blastomere enucleation and embryonic cell fusion, as well as techniques of optical transfection and injection for targeted delivery of biomolecules into living embryos and laser-mediated microsurgery of externally developing embryos. Possible applications of ultrashort laser pulses for use in Assisted Reproductive Technologies are also highlighted. Moreover, we discuss various nonlinear optical microscopy techniques (two-photon excited fluorescence, second and third harmonic generation, and coherent Raman scattering) and their application for label-free non-invasive imaging of embryos in their unperturbed state or post-laser-induced modifications
    corecore