12 research outputs found

    Monochromatic computed microtomography using laboratory and synchrotron sources and X-ray fluorescence analysis for comprehensive analysis of structural changes in bones

    Get PDF
    A combination of X-ray tomography at different wavelengths and X-ray fluorescence analysis was applied in the study of two types of bone tissue changes: prolonged presence in microgravity conditions and age-related bone growth. The proximal tail vertebrae of geckos were selected for investigation because they do not bear the supporting load in locomotion, which allows them to be considered as an independent indicator of gravitational influence. For the vertebrae of geckos no significant differences were revealed in the elemental composition of the flight samples and the synchronous control samples. In addition, the gecko bone tissue samples from the jaw apparatus, spine and shoulder girdle were measured. The dynamics of structural changes in the bone tissue growth was studied using samples of a human fetal hand. The hands of human fetuses of 11–15 weeks were studied. Autonomous zones of calcium accumulation were found not only in individual fingers but in each of the investigated phalanges. The results obtained are discussed

    Uterine leiomyosarcoma and disseminated peritoneal leiomyomatosis in the surgical treatment of uterine myoma: a retrospective analysis

    Get PDF
    Aim. To analyze the incidence and types of adverse outcomes and complications of laparoscopic myomectomies. Materials and methods. This work is a retrospective study based on data from the Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology. We analyzed 711 case histories of patients diagnosed with uterine myoma who received surgical treatment in the Department of Innovative Oncology and Gynecology from 2015 to 2019. The frequency of malignant neoplasms, verified by pathomorphological examination, and the characteristics of surgical interventions performed in these patients were comparatively evaluated. Results. Surgical interventions for uterine myoma are leading in gynecology due to the high prevalence of such disorders. Conservative myomectomy remains the "gold standard" in organ-sparing surgery. However, during surgeries for suspected benign neoplasms, there is a risk of morcellation of the malignant tumor, significantly worsening patient survival outcomes. In our study, the incidence of uterine leiomyosarcoma in suspected benign neoplasms was 0.98%. The probability of parasitic myomas or disseminated perineal leiomyomatosis after myomatous nodule morcellation is 0.19%. Conclusion. No reliable information about the malignant potential of the tumor and its proliferative activity can be obtained until a definitive pathomorphological examination. The above considerations warrant the routine use of prophylactic measures to prevent tumor cell dissemination

    Control of Columnar Grain Microstructure in CSD LaNiO<sub>3</sub> Films

    No full text
    Conductive LaNiO3 (LNO) films with an ABO3 perovskite structure deposited on silicon wafers are a promising material for various electronics applications. The creation of a well-defined columnar grain structure in CSD (Chemical Solution Deposition) LNO films is challenging to achieve on an amorphous substrate. Here, we report the formation of columnar grain structure in LNO films deposited on the Si-SiO2 substrate via layer-by-layer deposition with the control of soft-baking temperature and high temperature annealing time of each deposited layer. The columnar structure is controlled not by typical heterogeneous nucleation on the film/substrate interface, but by the crystallites’ coalescence during the successive layers’ deposition and annealing. The columnar structure of LNO film provides the low resistivity value ρ~700 µOhm·cm and is well suited to lead zirconate-titanate (PZT) film growth with perfect crystalline structure and ferroelectric performance. These results extend the understanding of columnar grain growth via CSD techniques and may enable the development of new materials and devices for distinct applications

    In-Situ Imaging of a Light-Induced Modification Process in Organo-Silica Films via Time-Domain Brillouin Scattering

    No full text
    International audienceWe applied time-domain Brillouin scattering (TDBS) for the characterization of porogen-based organosilicate glass (OGS) films deposited by spin-on-glass technology and cured under different conditions. Although the chemical composition and porosity measured by Fourier-transform infrared (FTIR) spectroscopy and ellipsometric porosimetry (EP) did not show significant differences between the films, remarkable differences between them were revealed by the temporal evolution of the Brillouin frequency (BF) shift of the probe light in the TDBS. The observed modification of the BF was a signature of the light-induced modification of the films in the process of the TDBS experiments. It correlated to the different amount of carbon residue in the samples, the use of ultraviolet (UV) femtosecond probe laser pulses in our optical setup, and their intensity. In fact, probe radiation with an optical wavelength of 356 nm appeared to be effective in removing carbon residue through single-photon absorption processes, while its two-photon absorption might have led to the breaking of Si-CH3 bonds in the OSG matrix. The quantum chemical calculations confirmed the latter possibility. This discovery demonstrates the possibility of local modifications of OSG films with a nanometric resolution via nonlinear optical processes, which could be important, among other applications, for the creation of active surface sites in the area-selective deposition of atomic layers

    Genetic Analysis of Crimean-Congo Hemorrhagic Fever Virus in Russia

    No full text
    Genetic analysis of wild-type Crimean-Congo hemorrhagic fever (CCHF) virus strains recovered in the European part of Russia was performed. Reverse transcriptase PCR followed by direct sequencing was used to recover partial sequences of the CCHF virus medium (M) genome segment (M segment) from four pools of Hyalomma marginatum ticks and six human patients. Phylogenetic analysis of the M-segment sequences from Russian strains revealed a close relatedness of the strains (nucleotide sequence diversity, ≤5.0%). The strains differed significantly from CCHF viruses from other regions of the world (nucleotide sequence diversity, 10.3 to 20.4%), suggesting that CCHF virus strains recovered in the European part of Russia form a distinct group

    Fabrication and Characterization of New Er-Doped Yttrium&ndash;Scandium&ndash;Aluminum&ndash;Garnet Ceramics

    No full text
    We report the fabrication and characterization of yttrium&ndash;aluminum&ndash;garnet (Er:YAG) and yttrium&ndash;scandium&ndash;aluminum&ndash;garnet (Er:YSAG) ceramics for the implementation of analysis as an active medium for 1500 nm lasing. High erbium content Er:YAG and Er:YSAG ceramics are fabricated from Er:YAG and Er:YSAG powders, respectively. All ceramic samples belong to the garnet-type cubic structure (space group Ia3d) without any traceable impure phases. Including Sc3+ in the Er:YAG crystal structure leads to improved mechanical characteristics and elastic&ndash;plastic properties of the materials. The optical transmittance of ceramics is affected strongly by including Sc3+ and increases up to 60% at about 1500 nm

    Data publication: Modification of Porous Ultralow‑k Film by Vacuum Ultraviolet Emission

    No full text
    Modification of spin-on-deposited porous PMO (periodic mesoporous organosilica) ultralow-k (ULK) SiCOH films (k = 2.33) containing both methyl terminal and methylene bridging groups by vacuum ultraviolet (VUV) emission from Xe plasma is studied. The temporal evolution of chemical composition, internal defects, and morphological properties (pore structure transformation) is studied by using Fourier transform infrared spectroscopy, in situ laser ellipsometry, spectroscopic ellipsometry, ellipsometric porosimetry (EP), positron-annihilation lifetime spectroscopy (PALS), and Doppler broadening positron-annihilation spectroscopy. Application of the different advanced diagnostics allows making conclusions on the dynamics of the chemical composition and pore structure. The time frame of the VUV exposure in the current investigation can be divided into two phases. During the first short phase, film loses almost all of its surface methyl and matrix bridging groups. An increase of material porosity due to removal of methyl groups with simultaneous matrix shrinkage is found by in situ ellipsometry. The removal of bridging bonds leads to an increase of matrix intrinsic porosity. Nevertheless, when the treated material is exposed to the ambient air, the sizes of micro- and mesopores and pores interconnectivity decrease with the VUV exposure time according to PAS and EP data. The last is the result of the additional film shrinkage caused by atmosphere exposure. During the second phase the increase of mesopore size is detected by both EP and PAS. The increase of mesopore size goes all the time as it is expected from in situ ellipsometry, but it is masked by the air exposure

    "Flora of Russia" on iNaturalist: a dataset

    No full text
    The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities
    corecore