100 research outputs found

    Switching from visibility to invisibility via Fano resonances: theory and experiment

    Full text link
    Subwavelength structures demonstrate many unusual optical properties which can be employed for engineering functional metadevices, as well as scattering of light and invisibility cloaking. Here we demonstrate that the suppression of light scattering for any direction of observation can be achieved for an uniform dielectric object with high refractive index, in a sharp contrast to the cloaking with multilayered plasmonic structures suggested previously. Our finding is based on the novel physics of cascades of Fano resonances observed in the Mie scattering from a homogeneous dielectric rod. We observe this effect experimentally at microwaves by employing high temperature-dependent dielectric permittivity of a glass cylinder with heated water. Our results open a new avenue in analyzing the optical response of hight-index dielectric nanoparticles and the physics of cloaking.Comment: 8 pages, 4 figure

    Phase diagram for the transition from photonic crystals to dielectric metamaterials

    Full text link
    Photonic crystals and metamaterials represent two seemingly different classes of artificial electromagnetic media but often they are composed of similar structural elements arranged in periodic lattices. The important question is how to distinguish these two types of periodic photonic structures when their parameters, such as dielectric permittivity and lattice spacing, vary continuously. Here, we discuss transitions between photonic crystals and all-dielectric metamaterials and introduce the concept of a phase diagram and an order parameter for such structured materials, based on the physics of Mie and Bragg resonances. We show that a periodic photonic structure transforms into a metamaterial when the Mie gap opens up below the lowest Bragg bandgap where the homogenization approach can be justified and the effective permeability becomes negative. Our theoretical approach is confirmed by detailed microwave experiments for a metacrystal composed of a square lattice of glass tubes filled with heated water. This analysis yields deep insight into the properties of periodic photonic structures, and it also provides a useful tool for designing different classes of electromagnetic materials in a broad range of parameters.Comment: 7 pages, 6 figure

    Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells

    Full text link
    We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques

    Broadband isotropic μ-near-zero metamaterials

    Get PDF
    Natural diamagnetism, while being a common phenomenon, is limited to permeability values close to unity. Artificial diamagnetics, to the contrary, can be engineered to provide much lower values and may even possess an effective permeability close to zero. In this letter, we provide an experimental confirmation of the possibility to obtain extremely low permeability values by manufacturing an isotropic metamaterial composed of conducting cubes. We show that the practical assembly is quite sensitive to fabrication tolerances and demonstrate that permeability of about μ=0.15 is realisable.This work was supported by the Ministry of Education and Science of Russian Federation (Project 11.G34.31.0020), Dynasty Foundation (Russia), grant of the President of Russian Federation, and by the Australian Research Council (CUDOS Centre of Excellence CE110001018)

    Bending of electromagnetic waves in all-dielectric particle array waveguides

    No full text
    We propose and demonstrate experimentally an alternative approach for realizing subwavelength photonic structures, exploiting the waveguiding properties of chains of high-index dielectric disks with both electric and magnetic dipole resonances. We reveal that the electromagnetic energy can be efficiently guided through sharp corners by means of the mode polarization conversion at waveguide bends. We confirm experimentally the guidance through a 90° bend in the microwave frequency range.This work was supported by the Ministry of Education and Science of the Russian Federation (Project 11.G34.31.0020, GOSZADANIE 2014/190, Zadanie No. 3.561.2014/K, 14.584.21.0009 10), by Russian Foundation for Basic Research, the Dynasty Foundation (Russia), the Australian Research Council via Future Fellowship Program (No. FT110100037), and the Australian National University

    Probing magnetic and electric optical responses of silicon nanoparticles

    No full text
    We study experimentally both magnetic and electric optically induced resonances of silicon nanoparticles by combining polarization-resolved dark-field spectroscopy and near-field scanning optical microscopy measurements. We reveal that the scattering spectra exhibit strong sensitivity of electric dipole response to the probing beam polarization and attribute the characteristic asymmetry of measured near-field patterns to the excitation of a magnetic dipole mode. The proposed experimental approach can serve as a powerful tool for the study of photonic nanostructures possessing both electric and magnetic optical responses.This work was financially supported by Government of Russian Federation (Project Nos. 14.584.21.0009 10 and GOSZADANIE 2014/190, Zadanie No. 3.561.2014/K, 074- U01), Russian Foundation for Basic Research and the Australian Research Council
    corecore