4 research outputs found

    Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries

    No full text
    Demonstration of three-dimensional all-solid-state Li-ion batteries (3D SSLIBs) has been a long-standing goal for numerous researchers in the battery community interested in developing high power and high areal energy density storage solutions for a variety of applications. Ideally, the 3D geometry maximizes the volume of active material per unit area, while keeping its thickness small to allow for fast Li diffusion. In this paper, we describe experimental testing and simulation of 3D SSLIBs fabricated using materials and thin-film deposition methods compatible with semiconductor device processing. These 3D SSLIBs consist of Si microcolumns onto which the battery layers are sequentially deposited using physical vapor deposition. The power performance of the 3D SSLIBs lags significantly behind that of similarly prepared planar SSLIBs. Analysis of the experimental results using finite element modeling indicates that the origin of the poor power performance is the structural inhomogeneity of the 3D SSLIB, coupled with low electrolyte ionic conductivity and diffusion rate in the cathode, which lead to highly nonuniform internal current density distribution and poor cathode utilization

    Surface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries

    No full text
    The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al–Li–O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41.5 μAh/cm<sup>2</sup> in two cycles. Surprisingly, the addition of a Cu capping layer is insufficient to prevent the device degradation. Nevertheless, Si electrodes present extremely stable cycling, maintaining >92% of its capacity after 100 cycles, with average Coulombic efficiency of 98%

    Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries

    No full text
    Rechargeable, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly desirable to power an emerging class of miniature, autonomous microsystems that operate without a hardwire for power or communications. A variety of three-dimensional (3D) LIB architectures that maximize areal energy density has been proposed to address this need. The success of all of these designs depends on an ultrathin, conformal electrolyte layer to electrically isolate the anode and cathode while allowing Li ions to pass through. However, we find that a substantial reduction in the electrolyte thickness, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer is conformal and pinhole free. We demonstrate this by fabricating individual, solid-state nanowire core–multishell LIBs (NWLIBs) and cycling these inside a transmission electron microscope. For nanobatteries with the thinnest electrolyte, ≈110 nm, we observe rapid self-discharge, along with void formation at the electrode/electrolyte interface, indicating electrical and chemical breakdown. With electrolyte thickness increased to 180 nm, the self-discharge rate is reduced substantially, and the NWLIBs maintain a potential above 2 V for over 2 h. Analysis of the nanobatteries’ electrical characteristics reveals space-charge limited electronic conduction, which effectively shorts the anode and cathode electrodes directly through the electrolyte. Our study illustrates that, at these nanoscale dimensions, the increased electric field can lead to large electronic current in the electrolyte, effectively shorting the battery. The scaling of this phenomenon provides useful guidelines for the future design of 3D LIBs

    Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride

    No full text
    When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS<sub>2</sub>) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS<sub>2</sub> with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS<sub>2</sub> monolayer triangles average 1 μm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS<sub>2</sub> sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS<sub>2</sub> with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS<sub>2</sub>/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS<sub>2</sub>/GaN contact resistivity to be less than 4 Ω·cm<sup>2</sup> and current spreading in the MoS<sub>2</sub> monolayer of approximately 1 μm in diameter
    corecore