3 research outputs found

    Phase-Constrained Spectrum Deconvolution for Fourier Transform Mass Spectrometry

    No full text
    This Article introduces a new computationally efficient noise-tolerant signal processing method, referred to as phased spectrum deconvolution method (ΦSDM), designed for Fourier transform mass spectrometry (FT MS). ΦSDM produces interference-free mass spectra with resolution beyond the Fourier transform (FT) uncertainty limit. With a presumption that the oscillation phases are preserved, the method deconvolves an observed FT spectrum into a distribution of harmonic components bound to a fixed frequency grid, which is several times finer than that of FT. The approach shows stability under noisy conditions, and the noise levels in the resulting spectra are lower than those of the original FT spectra. Although requiring more computational power than standard FT algorithms, ΦSDM runs in a quasilinear time. The method was tested on both synthetic and experimental data, and consistently demonstrated performance superior to the FT-based methodologies, be it across the entire mass range or on a selected mass window of interest. ΦSDM promises substantial improvements in the spectral quality and the speed of FT MS instruments. It might also be beneficial for other spectroscopy approaches which require harmonic analysis for data processing

    Determination of Collision Cross-Sections of Protein Ions in an Orbitrap Mass Analyzer

    No full text
    We demonstrate a method for determining the collision cross-sections (CCSs) of protein ions based on the decay rate of the time-domain transient signal from an Orbitrap mass analyzer. Multiply charged ions of ubiquitin, cytochrome <i>c</i>, and myoglobin were generated by electrospray ionization of both denaturing solutions and ones with high salt content to preserve native-like structures. A linear relationship between the pressure in the Orbitrap analyzer and the transient decay rate was established and used to demonstrate that the signal decay is primarily due to ion-neutral collisions for protein ions across the entire working pressure range of the instrument. The CCSs measured in this study were compared with previously published CCS values measured by ion mobility mass spectrometry (IMS), and results from the two methods were found to differ by less than 7% for all charge states known to adopt single gas-phase conformations

    Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-Throughput Quantitative Analysis

    No full text
    The growing trend toward high-throughput proteomics demands rapid liquid chromatography–mass spectrometry (LC–MS) cycles that limit the available time to gather the large numbers of MS/MS fragmentation spectra required for identification. Orbitrap analyzers scale performance with acquisition time and necessarily sacrifice sensitivity and resolving power to deliver higher acquisition rates. We developed a new mass spectrometer that combines a mass-resolving quadrupole, the Orbitrap, and the novel Asymmetric Track Lossless (Astral) analyzer. The new hybrid instrument enables faster acquisition of high-resolution accurate mass (HRAM) MS/MS spectra compared with state-of-the-art mass spectrometers. Accordingly, new proteomics methods were developed that leverage the strengths of each HRAM analyzer, whereby the Orbitrap analyzer performs full scans with a high dynamic range and resolution, synchronized with the Astral analyzer’s acquisition of fast and sensitive HRAM MS/MS scans. Substantial improvements are demonstrated over previous methods using current state-of-the-art mass spectrometer
    corecore