3 research outputs found

    Machine Learning for Mini-EUSO Telescope Data Analysis

    Full text link
    Neural networks as well as other methods of machine learning (ML) are known to be highly efficient in different classification tasks, including classification of images and videos. Mini- EUSO is a wide-field-of-view imaging telescope that operates onboard the International Space Station since 2019 collecting data on miscellaneous processes that take place in the atmosphere of Earth in the UV range. Here we briefly present our results on the development of ML-based approaches for recognition and classification of track-like signals in the Mini-EUSO data, among them meteors, space debris and signals the light curves and kinematics of which are similar to those expected from extensive air showers generated by ultra-high-energy cosmic rays. We show that even simple neural networks demonstrate impressive performance in solving these tasks.Comment: 10 pages, 3 figures, ICRC2023 conferenc

    Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

    Full text link
    Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.Comment: 15 page

    Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

    No full text
    Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments
    corecore