101 research outputs found

    Repression of cyclin D1 as a target for germ cell tumors

    Get PDF
    Metastatic germ cell tumors (GCT) are curable, however GCTs refractory to cisplatin-based chemotherapy have a poor prognosis. This study explores D-type cyclins as molecular targets in GCTs because all-trans-retinoic acid (RA)-mediated differentiation of the human embryonal carcinoma (EC) cell line NT2/D1 is associated with G1 cell cycle arrest and proteasomal degradation of cyclin D1. RA effects on D-type cyclins are compared in human EC cells that are RA sensitive or dually RA and cisplatin resistant (NT2/D1-R1) and in clinical GCTs that have both EC and mature teratoma components. Notably, GCT differentiation was associated with reduced cyclin D1 but increased cyclin D3 expression. RA was shown here to repress cyclin D1 through a transcriptional mechanism in addition to causing its degradation. The siRNA-mediated repression of individual cyclin D species resulted in growth inhibition in both RA sensitive and resistant EC cells. Only repression of cyclin D1 occurred in vitro and when clinical GCTs mature, implicating cyclin D1 as a molecular therapeutic target. To confirm this, the EGFR-tyrosine kinase inhibitor, Erlotinib, was used to repress cyclin D1. This inhibited proliferation in RA and cisplatin sensitive and resistant EC cells. Taken together, these findings implicate cyclin D1 targeting agents for the treatment of GCTs

    Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Testicular germ cell tumors (TGCTs) are classified as seminonas or non-seminomas of which a major subset is embryonal carcinoma (EC) that can differentiate into diverse tissues. The pluripotent nature of human ECs resembles that of embryonic stem (ES) cells. Many Wnt signalling species are regulated during differentiation of TGCT-derived EC cells. This study comprehensively investigated expression profiles of Wnt signalling components regulated during induced differentiation of EC cells and explored the role of key components in maintaining pluripotency.</p> <p>Methods</p> <p>Human embryonal carcinoma cells were stably infected with a lentiviral construct carrying a canonical Wnt responsive reporter to assess Wnt signalling activity following induced differentiation. Cells were differentiated with all-<it>trans </it>retinoic acid (RA) or by targeted repression of pluripotency factor, POU5F1. A Wnt pathway real-time-PCR array was used to evaluate changes in gene expression as cells differentiated. Highlighted Wnt pathway genes were then specifically repressed using siRNA or stable shRNA and transfected EC cells were assessed for proliferation, differentiation status and levels of core pluripotency genes.</p> <p>Results</p> <p>Canonical Wnt signalling activity was low basally in undifferentiated EC cells, but substantially increased with induced differentiation. Wnt pathway gene expression levels were compared during induced differentiation and many components were altered including ligands (WNT2B), receptors (FZD5, FZD6, FZD10), secreted inhibitors (SFRP4, SFRP1), and other effectors of Wnt signalling (FRAT2, DAAM1, PITX2, Porcupine). Independent repression of FZD5, FZD7 and WNT5A using transient as well as stable methods of RNA interference (RNAi) inhibited cell growth of pluripotent NT2/D1 human EC cells, but did not appreciably induce differentiation or repress key pluripotency genes. Silencing of FZD7 gave the greatest growth suppression in all human EC cell lines tested including NT2/D1, NT2/D1-R1, Tera-1 and 833K cells.</p> <p>Conclusion</p> <p>During induced differentiation of human EC cells, the Wnt signalling pathway is reprogrammed and canonical Wnt signalling induced. Specific species regulating non-canonical Wnt signalling conferred growth inhibition when targeted for repression in these EC cells. Notably, FZD7 repression significantly inhibited growth of human EC cells and is a promising therapeutic target for TGCTs.</p

    An Appetite for Technology: Hoffmann–La Roche

    No full text

    Retinoid Chemoprevention Trials: Cyclin D1 in the Crosshairs

    No full text

    Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma

    No full text
    10.1089/hum.2009.196Human Gene Therapy216683-694HGTH

    Transgenic expression of PML/RARalpha impairs myelopoiesis.

    Full text link
    corecore