3 research outputs found

    Graphene Oxide Chemistry Management via the Use of KMnO4/K2Cr2O7 Oxidizing Agents

    No full text
    In this paper, we propose a facile approach to the management of graphene oxide (GO) chemistry via its synthesis using KMnO4/K2Cr2O7 oxidizing agents at different ratios. Using Fourier Transformed Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, and X-ray Absorption Spectroscopy, we show that the number of basal-plane and edge-located oxygenic groups can be controllably tuned by altering the KMnO4/K2Cr2O7 ratio. The linear two-fold reduction in the number of the hydroxyls and epoxides with the simultaneous three-fold rise in the content of carbonyls and carboxyls is indicated upon the transition from KMnO4 to K2Cr2O7 as a predominant oxidizing agent. The effect of the oxidation mixture’s composition on the structure of the synthesized GOs is also comprehensively studied by means of X-ray diffraction, Raman spectroscopy, transmission electron microscopy, atomic-force microscopy, optical microscopy, and the laser diffraction method. The nanoscale corrugation of the GO platelets with the increase of the K2Cr2O7 content is signified, whereas the 10–100 ΞΌm lateral size, lamellar, and defect-free structure is demonstrated for all of the synthesized GOs regardless of the KMnO4/K2Cr2O7 ratio. The proposed method for the synthesis of GO with the desired chemistry opens up new horizons for the development of graphene-based materials with tunable functional properties

    Eco-Physiological Response of Conifers from High-Latitude and -Altitude Eurasian Regions to Stratospheric Volcanic Eruptions

    Get PDF
    БтратосфСрныС вулканичСскиС извСрТСния Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ измСнСния Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ баланса, атмосфСрных Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ΠΈ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠ³ΠΎΠ΄Π½Ρ‹Ρ… условий, Ρ‡Ρ‚ΠΎ Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ влияниС Π½Π° состояниС глобальной циркуляции атмосфСры. Π”Π°Π½Π½Ρ‹Π΅ измСнСния, ассоциированныС с Ρ‚Π°ΠΊΠΈΠΌΠΈ извСрТСниями, Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв приводят ΠΊ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΠΎΡ…ΠΎΠ»ΠΎΠ΄Π°Π½ΠΈΡŽ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π»Π΅Ρ‚ послС событий. ЦСлью исслСдования стало выявлСниС экофизиологичСского ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π΄Π΅Ρ€Π΅Π²ΡŒΠ΅Π² листвСнницы Π½Π° сСвСро-востокС Π―ΠΊΡƒΡ‚ΠΈΠΈ (YAK), востокС Π’Π°ΠΉΠΌΡ‹Ρ€Π° (TAY) ΠΈ АлтаС (ALT) Π½Π° климатичСскиС Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Π΅ ΠΌΠΎΡ‰Π½Ρ‹ΠΌΠΈ вулканичСскими извСрТСниями 535, 540, 1257, 1640, 1815 ΠΈ 1991 Π³ΠΎΠ΄ΠΎΠ² Π½.э. с использованиСм Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π³ΠΎΠ΄ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ† Π΄Π΅Ρ€Π΅Π²ΡŒΠ΅Π²: ΡˆΠΈΡ€ΠΈΠ½Π° Π³ΠΎΠ΄ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΡŒΡ†Π° (TRW), максимальная ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ·Π΄Π½Π΅ΠΉ дрСвСсины (MXD), Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ стСнки (CWT), ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠΎΠ² ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΈ кислорода (13C/12C ΠΈ 18O/16O) Π² Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Π΅ Π³ΠΎΠ΄ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ†. Π”Π°Π½Π½ΠΎΠ΅ исслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ Ρ…Ρ€ΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎ TRW, CWT, MXD ΠΈ Ξ΄18O-Ρ…Ρ€ΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ содСрТат Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ сигнал, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ информация ΠΎΠ± осадках ΠΈ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π΅ упругости водяного ΠΏΠ°Ρ€Π° зафиксирована Π² хронологиях Ξ΄13C. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ ΠΎ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ солнСчного сияния Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΎΡ‚Ρ€Π°Π·ΠΈΠ»Π°ΡΡŒ Π² Ρ…Ρ€ΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ξ΄18O Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² YAK ΠΈ ALT. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³ΠΎΠ΄ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ† Π΄Π΅Ρ€Π΅Π²ΡŒΠ΅Π² зафиксировали ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ Ρ…ΠΎΠ»ΠΎΠ΄Π½Ρ‹Ρ…, Π²Π»Π°ΠΆΠ½Ρ‹Ρ… ΠΈ ΠΎΠ±Π»Π°Ρ‡Π½Ρ‹Ρ… Π»Π΅Ρ‚Π½ΠΈΡ… ΠΏΠΎΠ³ΠΎΠ΄Π½Ρ‹Ρ… аномалиях Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ VI ΠΈ XIII Π²Π². Однако Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ ΠΏΠΎΠ³ΠΎΠ΄Π½Ρ‹Ρ… условий Π² Π‘ΠΈΠ±ΠΈΡ€ΠΈ Π² Π»Π΅Ρ‚Π½ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ послС ΠΈΠ·Π²Π΅Ρ€ΠΆΠ΅Π½ΠΈΠΉ Π’Π°ΠΌΠ±ΠΎΡ€Π° (1815) ΠΈ ΠŸΠΈΠ½Π°Ρ‚ΡƒΠ±ΠΎ (1991) исходя ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π³ΠΎΠ΄ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Ρ† Π΄Π΅Ρ€Π΅Π²ΡŒΠ΅Π² выявлСно Π½Π΅ Π±Ρ‹Π»ΠΎStratospheric volcanic eruptions have had significant impacts on the radiation budget, atmospheric and surface temperatures, precipitation and regional weather patterns, resulting in global climatic changes. The changes associated with such eruptions most commonly result in cooling during several years after events. This study aimed to reveal eco-physiological response of larch trees from northeastern Yakutia (YAK), eastern Taimyr (TAY) and Altai (ALT) regions to climatic anomalies after major volcanic eruptions CE 535, 540, 1257, 1641, 1815 and 1991 using new multiple tree-ring parameters: tree-ring width (TRW), maximum latewood density (MXD), cell wall thicknesses (CWT), Ξ΄13C and Ξ΄18O in tree-ring cellulose. This investigation showed that TRW, CWT, MXD and Ξ΄18O chronologies recorded temperature signal, while information about precipitation and vapor pressure deficit was captured by Ξ΄13C chronologies. Sunshine duration was well recorded in Ξ΄18O from YAK and ALT. Tree-ring parameters recorded cold, wet and cloudy summer anomalies during the 6th and 13th centuries. However, significant summer anomalies after Tambora (1815) and Pinatubo (1991) eruptions were not captured by any tree-ring parameter
    corecore